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CHAPTER 1

Introduction

1.1 Background

The global climate system consists of dynamical processes taking place in atmosphere,
oceans, cryosphere (ice-sheets), geosphere (land surface) and biosphere (living organ-
isms). Among these components many physical, chemical and biological interactions
occur in a wide rage of space and time scales, making it a highly complex system.
The state of the global climate is determined to a large extent by the amount of energy
stored by the climate system; the most important source of energy is the Sun.

The atmosphere is the most unstable and rapidly changing component of the sys-
tem, which makes it difficult to predict its state even in the near future. The atmosphere
consists of gases and aerosols (solid and liquid particles). The gases are mainly nitro-
gen (78.1%), oxygen (20.9%) and argon (0.93%). However, greenhouse gases (less
than 0.1%), such as carbon dioxide, methane and ozone play an important role in the
Earth’s energy budget by their influence on the absorption and transfer of electromag-
netic radiation. The same holds for solid aerosols (like sulphate, dust, black carbon)
and liquid aerosols (water droplets in clouds) that are transported by the atmospheric
currents from their respective source regions leading to highly variable concentrations
in space and time. In addition, the atmosphere contains a varying amount of water
vapour that is also a strong absorber of long wave radiation and as such contributes to
the greenhouse effect.

The atmosphere and the oceans are strongly coupled; they exchange heat, momen-
tum and water. The circulation of the oceans is much slower than that of the atmo-
sphere. The oceans store a much larger quantity of energy than the atmosphere and the
flow of energy between the oceans and atmosphere is an important aspect of the global
climate. The cryosphere consists of those regions of the globe, both land and sea, that
are covered by snow and ice. It has a high albedo (reflectivity of the solar radiation),
so that a large fraction of incoming solar heat is not absorbed. Vegetation at the land
surface and the soil itself contribute substantially to the absorption of solar energy and
to the water cycle. Also, the texture of the land surface influences the dynamics of
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2 Introduction

the atmosphere as the air flows over it. Lastly, the biosphere has a large impact on the
atmospheric composition. It influences the fluxes of certain greenhouse gases. For fur-
ther reading on the climate system we suggest the IPCC report, (2001) and Trenberth,
(1992).

1.1.1 Modelling the climate
The different processes in the climate system are expressed in mathematical equations
and solved numerically on a discrete set of points covering the Earth, forming a numeri-
cal model. The most complex of these are used to simulate the behaviour of the climate
system and in particular its response to changing future conditions like the projected
increase in the amount of greenhouse gases. They consist of connected sub-modules
describing the various parts of the climate system and are based on the the funda-
mental laws of physics: conservation of energy, conservation of momentum, conser-
vation of mass and the ideal gas law. The most complex climate models consist of an
atmospheric general circulation model (AGCM) that describes the three-dimensional
velocity fields, temperature and composition of the atmosphere, coupled to an ocean
general circulation model (OGCM) that describes the three-dimensional ocean currents
and water properties, a land surface model (LSM) describing soil moisture and energy
fluxes at various depths and snow and vegetation characteristics, a sea-ice model that
describes the formation, transport and melting of sea-ice. The latest developments in-
clude a representation of the carbon cycle in biogeochemistry modules that describe
the uptake, storage and release of carbon by living organisms on land and in the ocean
in order to include the feedback of changes in biology in a warmer world on the CO2

levels in the atmosphere.
When dealing with such complex models, with their different scales in time and

space, the necessity of making simplifications is unavoidable. The mathematical equa-
tions are based on approximations, the model is discretized and the solution is approx-
imated at a finite number of positions (grid-points). The more grid-points a model has,
the more complex the model and the more computation time it takes to calculate the
solution. However, taking more grid-points does not necessarily give a better predic-
tion of the model behaviour in future time. Some processes cannot be resolved in a
model; they occur on a scale smaller than the grid-size or are too complex or even
not well understood. These processes are captured in the model by parameterizations.
Model parameters are fixed constants and are estimated by using observed data and/or
derived from fundamental physical principles. Estimates that are less accurate affect
the solution of the system of equations.

Uncertainty in the outcome of climate models is widely recognized (e.g. IPCC
2001, Reilley et al., 2001, Forest et al., 2002, Allen, 2003, Murphy et al., 2004, Stocker,
2004). It hinders policy-making on the issue of climate change. Besides parameter
uncertainty, there is uncertainty in the understanding of the physical processes that
influence the climate as well as uncertainty in how climate is changed by humans (such
as energy consumption and green-house gas emissions). Because of this uncertainty,
a range of possible climate changes is usually given. This range may be too large
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to decide about the best policy on for instance reduction of greenhouse gas emissions.
Stocker (2004) suggests that rather than tuning a model such that it fits the observations
the best, one should quantify the range of outcomes when changing parameter values
within given realistic bounds. It will require improved climate models and a systematic
analysis of uncertainties using probability concepts. Allen (2003) points out that model
parameter changes that are unlikely should be ruled out when making probabilistic
climate predictions. Also, when comparing the results of different models to define
a range of possible outcomes, models should be weighed by some measure of their
similarity to the real world.

Murphy et al. (2004) made a systematic attempt to determine the range of climate
changes consistent with uncertainties in the modelling process. It is essential that with
the GCM prediction a quantitive estimate of the uncertainty is given to make the result
more useful for policy makers. Uncertainty in their mixed atmosphere-ocean model
cannot be accurately determined from observations. The range of predictions should
be seen as a lower limit of the uncertainty in the outcome. If uncertainty in structural
elements of the model are also considered, such as resolution and level of detail in pa-
rameterizations, this limit could increase. Only a large ensemble of GCM predictions,
in which parameters are chosen such that the widest range of uncertainties is captured,
can provide a reliable specification of the spread of possible regional climate changes.
In a first attempt to evaluate climate sensitivity due to anthropogenic climate change
(assuming a doubled CO2 concentration), Murphy et al. (2004) compiled an ensem-
ble containing four million model versions with randomly chosen multiple parameter
perturbations. They assumed that the impacts combine linearly and that each para-
meter has a uniform distribution within a range of values. They weighed the model
predictions of climate sensitivity according to the likelyhood that the simulation of
present-day climate is consistent with observations (the members of the ensemble are
not equally reliable). In this way they narrow the range of possible temperature in-
crease. As a next step, they propose to sample multiple parameter perturbations since
the assumption that individual parameter perturbations combine linearly is unlikely to
be valid at a regional scale.

In relation to model uncertainty, Forest et al. (2002) analysed three key properties
of the climate system in a climate model of intermediate complexity. These proper-
ties are climate sensitivity, defined as the equilibrium global-mean surface temperature
change in response to a doubling of CO2 concentration, the rate of heat uptake by the
ocean and lastly anthropogenic aerosol forcing. Three independent climate observation
series were taken. They then systematically changed the parameters under considera-
tion to asses which simulation fits the three observed climate records the best. This
study differs from the main stream of climate uncertainty research by the fact that ob-
servations are varied instead of just the model parameters.

1.1.2 Climate and ecosystem
The biosphere is the global ecological system that integrates all living organisms (an-
imals, plants) including their interactions with the other components of the Earth’s
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climate system. The biosphere is composed of ecosystems acting at different smaller
scales. An ecosystem consists of a community of living organisms and their local
physical environment, functioning as a unit. The living and non-living elements of an
ecosystem are connected through flows of energy and chemical processes. Plants, for
instance, realize their food intake through photosynthesis (from water, carbon dioxide,
and light), but also need nutrients from the soil. Thus, plants interact with both the
atmosphere and the geosphere. The size and scale of an ecosystem can vary widely.
It may be a whole forest or a small pond. There are no absolute boundaries between
ecosystems. However, some entities may have well defined boundaries, such as deserts,
mountains or oceans. Ecosystems change continuously over time following certain
patterns. They also respond to environmental changes such as climate fluctuations and
anthropogenicly induced environmental changes. For further reading on ecosystems
we refer to Begon et al. (2006) and Hanski (1999).

Fluctuation in ecological systems is a topic of high importance. It deals with the
dynamics of (sub)populations of species and how these populations interact with their
environment. By estimating the survival probability of a species living in a given part of
its habitat, a contribution can be made to the development of conservation management
strategies. It has led to methods such as population viability analysis (PVA). PVA is
a collection of methods that evaluates the risk of extinction or decline of a biological
population and its chance to recover (Burgman et al., 1993, Akçakaya et al., 1999,
Akçakaya 2000a, 2000b, Akçakaya and Sjögren-Gulve, 2000, Brook et al., 2000).

Also in ecological modelling uncertainty is an important issue. Inaccurate and
insufficient data hamper PVA and, like in climate research, ranges (lower and up-
per bounds) of parameters are used (Akçakaya 2000b, Akçakaya and Sjögren-Gulve,
2000). Sensitivity analysis can be used to reduce uncertainties. It could be helpful to
make the appropriate choice when collecting more data (through fieldwork). Then it
is important to know a priori which parameters are most sensitive and should there-
fore be given priority. When analysing the dynamics of a population, a parameter
sensitivity analysis is often included (Conroy et al, 1995, Akçakaya, 2000b, 2000c,
Moilanen, 2002, Drechsler et al, 2003). Small changes in the parameters could change
the behaviour of a (sub)population considerably. Also, in terms of conservation man-
agement, it is of great value to analyse how certain changes in the parameter values
may improve the conditions for a specified population, and therefore reduce the risk of
extinction.

The climate influences ecological processes in various ways. Recently, more atten-
tion has been given to the influence of large-scale climate variability upon ecological
processes, rather than only taking the local weather in account (Sæther, 1997, Mys-
terud et al., 2001, Stenseth et al., 2002). Of particular interest are the impacts of the
North Atlantic Oscillation (NAO), e.g. Thompson and Grosbois, (2002), Arnott and
Ruxton, (2002), Lusseau et al., (2004) and the El-Nino Southern Oscillation (ENSO),
e.g. Pounds et al., (1999), Urban et al., (2000). These climatic patterns affect both
terrestrial and marine vegetation and animal life. Stenseth et al. (2002) point out that
interaction between biologists and climate researchers will lead to more insight in the
response of ecosystems to climate variability and climate change. Uncertainties in
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the understanding of the underlying mechanisms in both the climate system and the
ecosystem as well as our restricted notion of their interactions limit the knowledge of
today. Stenseth et al. (2002) highlight five important aspects when analysing the ef-
fects that climate variations can have on ecosystems. Firstly, delayed effects of climate
are important in ecosystems. The year in which certain individuals are born may be
of influence on for instance their size, which might have an effect on their life-span.
Secondly, climate can have a different influence on sexes and age-classes. For instance,
the development of a population is altered when a climatic process influences younger
age classes more than older ones. Thirdly, due to climate change extreme events could
occur more frequently, which are often more relevant to ecosystems than fluctuations
in the mean climate. A severe winter with a longer frost period for instance can lead to
damage and death in plants and animals. Fourth, large climate fluctuations might affect
a particular organism, not only directly but also indirectly in a way that is not easily
understood because of the complex structure of the cause-effect chain. We already
mentioned the impact of the climatic patterns NAO and ENSO upon species, both ter-
restrial and marine. Fifth, it is important to recognize that climate effects may interact
with ecological factors. For instance, a warm winter might favour a certain population
and cause growth. A next warm winter might not have the same effect, because of
density dependence.

1.1.3 Parameter sensitivity and climate modelling
Inaccurate or insufficient data can lead to uncertainty in the parameters which will
influence the model output. Also, lack of knowledge of certain processes within a
model could cause an inaccurate description of the model and its parameters. When
it is known that certain parameters can not be estimated accurately, a parameter range
should be given, rather than just one value. It is important to analyse to which small
parameter perturbations the model is most sensitive. Thus, within uncertainty analy-
sis of climate models, parameter sensitivity is an important topic. It might be that a
parameter perturbation within the range given, has not much effect on the long term
characteristics of the dynamical system. It is clear that we are interested in small chan-
ges in parameters or combination of parameters to which the model is highly sensitive.
When these parameter perturbations, which we call effective parameter perturbations,
are identified, and we know their range, one can quantify the range of possible model
outcomes. Especially extreme climate predictions are of interest, which can be found
more easy if the most effective parameter perturbations are already known. In order
to quantify change in the dynamical characteristics with respect to a given reference
climate, a simulation of the model with the modified parameter values over an infinite
large time interval is required. The simulation should be long enough to make a good
approximation of the climate and its variability. A possible shift in the parameters may
have a natural cause or may be anthropogenicly induced. The changes in the model
output we focus on are the duration of certain preferred circulation patterns and the
transition from one to another.

As we mentioned, in the atmospheric circulation, preferred large-scale flow pat-
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terns, also referred to as weather regimes, occur (Reinhold and Pierrehumbert, 1982).
The atmosphere can be thought of as a dynamical system and weather regimes as quasi-
stable equilibria of the dynamical system. The atmosphere is a flow that moves from
one equilibrium to another (Charney and DeVore, 1979). The climate can be identified
by the strength by which the different regimes occur. Climate change can be looked
at in terms of change in the regime behaviour. The space dependent state variables of
the system such as temperature and pressure can be expressed in series of orthogonal
spectral functions. In this way new state variables are introduced: the time dependent
coefficients of these functions. Yet another transformation is commonly made. It uses
Empirical Orthonogonal Functions (EOFs) to identify the preferred regimes, (Haines
and Hannachi, 1995). The leading EOFs give the directions of the largest variability of
the atmospheric circulation.

Important patterns in the atmosphere are for instance the NAO (north atlantic os-
cillation) and the PNA (pacific north-american oscillation). These patterns can be rep-
resented by EOFs. The NAO is important for the regional climate in Western Europe.
A stronger NAO results in fewer easterlies and more westerlies which cause milder
winters in Western Europe. By using the EOFs the dimension of the phase space can
be reduced considerably and the data fields become more manageable. During a model
integration over a large time interval the atmospheric flow can be projected onto the
EOFs at each time step. This gives a time series of the anomalies into the direction of
the EOFs. From these time series probability density functions (PDFs) can be made.
Palmer (1999) pointed out that climate change causes change in the probability density
of the regimes, rather than a change in the structure of the regimes. It is of importance
to know which parameter perturbations cause the largest change in regime behaviour,
and secondly how much change is possible given a predefined uncertainty in the para-
meter values.

1.1.4 Climate driven metapopulation models
A metapopulation is a set of local populations of a species, divided over different habi-
tat patches. Migration between the patches may be possible. Metapopulation models
describe the dynamics of the metapopulation of one or more (interacting) species. A
wide spectrum of models is available, ranging from occupancy models on one hand,
to individual based models on the other hand. In occupancy models (see e.g. Levins,
1970), the patches can be in two states only, they are either occupied or empty. The
local dynamics of the population is not described. In individual based models (see
e.g. DeAngelis and Gross, 1992) the behaviour of each member of the population
individually as well as their interaction is described using mathematical expressions.
These models are highly sensitive to parameter perturbations and prone to error growth.
Moreover, extensive and large computations are needed in order to carry out an anal-
ysis (Levin, 1992, Pascual and Levin, 1999). In between occupancy and individual
based models, full scale structured metapopulation models are situated. They describe
the population dynamics as well as spatial dynamics, by modelling migration and cor-
relation among populations. The metapopulation model formulated in this thesis is a
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herbivore-predator model containing two patches. It has local population sizes as state
variables. Furthermore, it allows an atmospheric input.

Populations do not grow smoothly until they have reached their carrying capacity,
but tend to fluctuate. This is not only due to intrinsic processes and interactions, but
also due to environmental influences. One important aspect is the effect of the climate
upon the dynamics of the population. As mentioned earlier, the influence of large-
scale climate variability upon ecosystems, and in particular upon the dynamics of a
population, has gained growing attention (e.g. Sæther, 1997, Mysterud et al., 2001,
Stenseth et al., 2002). Long term changes in the environment, such as climate change
can affect ecological processes. To verify how much impact climate change can have, it
is significant to have a better understanding of the influence of climate upon ecosystems
and their interaction. Specific climate patterns, such as the NAO and ENSO, can be
linked to the dynamic behaviour of specific populations. We name wild red deer on the
west coast of Norway (Mysterud et al., 2001), bottlenose dolphins in the Moray Firth
UK and killer whales in Johnstone Strait, Canada (Lusseau et al., 2004), or toads and
frogs in highland forests at Monteverde, Costa Rica (Pounds et al., 1999).

As mentioned earlier, parameter sensitivity analysis is a useful instrument to have
at hand when interpreting model results for practical purposes (Conroy et al, 1995,
Akçakaya, 2000b, Moilanen, 2002, Drechsler et al, 2003). Small changes in parame-
ters could change the behaviour of a metapopulation considerably. When only a range
of parameters can be given, rather than one value, it is important to find out to which
parameter changes the system is the most sensitive. It is of great value to analyse how
changes in the parameter values may improve or deteriorate the conditions for a spec-
ified population. Results of such studies may be of use in conservation management.
When a subpopulation reaches a low value, it becomes at risk of extinction. As a mea-
sure of this extinction risk, we take the fifth percentile of the population, for a model
run over a large time interval. This fifth percentile is the value below which the popu-
lation size is found 5 out of 100 times in a series taken at fixed time intervals. The way
parameter changes act upon the fifth percentile may be an indication for the effect of
certain conservation measures.

1.2 Research objectives
Climate research is carried out with large-scale computer models that calculate the fluc-
tuations in the circulation of the atmosphere and ocean over a large timespan. These
models contain numerous parameters. From a large number of these parameters the
values are uncertain and only a possible range of values is known. Given this uncer-
tainty, it is desirable to obtain the full spectrum of possible model outcomes. This
requires a large amount of system evaluations.

In weather prediction a similar problem occurs. Uncertainty in the initial conditions
of the state variables influences the quality of the forecast. One wants to quantify the
(un)certainty of the forecast by replacing the individual forecast (reference solution)
by a range of possible outcomes. However, it is not feasible to change the initial state
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in all directions. This has led to the ensemble forecast where initial perturbations are
selected that change the forecast with a high probability. Such perturbations can lie
in the direction of the fastest growing components of the tangent linear system (this
system holds in the neighbourhood of the reference solution). At the European Centre
for Medium range Weather Forecasts (ECMWF) an ensemble prediction system (EPS)
is used where initial conditions are perturbed in this direction, see e.g. Buizza and
Palmer, (1995), Molteni et al., (1996), Buizza, (1997), Gelaro et al., (1998). Other
ways are also possible to obtain a perturbation of the initial conditions that have a strong
effect. At NCEP (National Centres for Environmental Prediction) a so called breeding
method is used for ensemble forecasting. Bred perturbations have grown most rapidly
during some period prior to the analysis, see e.g. Toth and Kalnay, (1993), Tracton
and Kalnay, (1993), Toth and Kalnay, (1997). The full non-linear system is used to
generate the breeding perturbations. Houtekamer and Derome (1995) compared the
two methods along with a method where random observational errors are added to
observe the impact on a data assimilation system.

In our study we deal with climate models for which a large computing time is
needed in order to obtain quantitative information about the dynamical characteristics
of a climate. A full scale climate model should include the dynamical interaction be-
tween atmosphere, oceans and continents. We restrict ourselves to the atmospheric
flow and use a general circulation model (GCM) to compute statistical properties of
the model at its chaotic attractor. Clearly , because of this chaotic behaviour, the model
equations should be integrated over an infinite time interval to obtain exact results. For
making a good approximation the time interval must be sufficiently large. This require-
ment makes it difficult to carry out a complete sensitivity analysis. In the process of
working with models it is necessary to know which parameters have the strongest effect
upon the outcome. We are interested in finding the most effective parameter perturba-
tions in climate models as well as in ecological models with a climatologic input. A
direct method (Dickinson and Gelinas, 1976), where parameters are perturbed at ran-
dom, is computationally too expensive if the required number of evaluations is made.
For each parameter perturbation a long run is needed to evaluate how much it affects
the model output. There is no a priori indication about the right choice of an effective
perturbation. Other existing methods such as simulated annealing (Kirkpatrick et al,
1983) fail to yield an answer within a reasonable computing time as well. Therefore, a
new method is needed that finds effective parameter perturbations in an efficient way.

In this study, we investigate whether such parameter perturbations can be chosen
on the basis of the short term behaviour of a model. We make use of the tangent
linear and adjoint equations of the models (see Errico, 1997, for a clear introduction
on this topic). Adjoint models have been commonly used for analysing the effect of
perturbations in initial conditions in climate models (see Courtier et al., 1993, for an
overview), and more recently for parameter perturbations (see e.g. Barkmeijer et al.,
2003). The tangent linear equations are computed by linearizing the original (non-
linear) model around a reference (unperturbed) orbit. These are used to compute the
evolution of small perturbations along the reference orbit. For our purpose the state
space of the tangent linear system needs to be extended with the parameter space. We
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then may compute the error growth in the original state space caused by a perturbation
in the parameter space over a short time interval over which the linearization applies. It
is noted that in the extended system the original state variables start in the origin, while
the parameters start from a sphere formed by all possible parameter perturbations of
a given size. The parameters then remain constant in time. With the adjoint method
we find the parameter perturbation that produces the largest change in state space in
the end point. This change is quantified by the so-called singular value and is related
to the exponent of the fastest growing component of the tangent linear system. The
chaotic attractor is scanned for the points where this singular value has a large value. It
is anticipated that the parameter perturbation corresponding to a singular value after it
has peaked may also have a large effect over a time interval that is sufficiently large to
compute the climate characteristics. Not every parameter perturbation obtained in this
way may have a strong effect upon the climate, but it is expected that the success rate
within this subset is much larger than selecting parameter perturbations completely
at random. This difference in success rate is the main topic of this thesis. As we
already remarked, a more systematic maximization procedure could not be found in
the numerical literature, because of the large number of parameters and the extremely
large time integration intervals for each parameter choice.

Corti and Palmer (1997) presented evidence that sensitivities based on short term
integrations are relevant for changes in long term statistics. For a quasi-geostrophic at-
mospheric model, they calculated perturbations to initial conditions that maximize the
projection of the perturbations after five days onto a particular flow pattern, for instance
the NAO or PNA. Next they took the average of 2000 perturbations calculated this way.
These average perturbations are added to the system as a time-invariant forcing. The
result is that the PDF of the PNA pattern changes much from this forcing perturba-
tion. Adjoint models are widely used for analysing sensitivities in initial conditions. In
addition to references given above we mention Molteni and Palmer (1993), Oortwijn
and Barkmeijer (1995) and Barkmeijer (1996). They can also be used to efficiently
calculate the sensitivity of various model parameters (Hall and Cacuci, 1983). In the
2001 IPCC rapport it is stated that a systematic evaluation of the effect of parameter
uncertainties on the climate simulation is urgently needed. Barkmeijer et al. (2001)
made a first step using forcing singular vectors in a sensitivity study. They compared
forcing singular vectors with initial condition singular vectors in 2-day forecasts.

To analyse parameter sensitivity in the context of an ecosystem model, Moilanen
(2002) added random errors to parameter values and analysed the change it brought
about in the output. For the purpose of conservation management Etienne (2004) stud-
ied possible protection measures for threatened species by analysing parameter depen-
dence in metapopulation models: the roles of patch size and patch connectivity were
investigated using a model based on a transition matrix. In population biology the ad-
joint method is rarely applied to differential equation models. In Lawson et al. (1995)
we meet a study on a predator-prey model. Huiskes (2002) worked out a closely related
technique based on automatic differentiation algorithms and applied it to problems of
stock assessment in fishery. In biological models one has to deal with a set of ecolog-
ical parameters and to make an evaluation of the effect of a parameter perturbation a
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large computation may be needed. This will typically be the case if weather fluctua-
tions have an effect on the biological populations. Then a large time interval has to
be considered in order to account for the various weather conditions that may occur.
So again we are in the situation that a systematic sensitivity analysis is not feasible
because of the large computing time and the large number of parameters. The latter
will certainly be the case for spatially distributed population models.

The sensitivity analysis we carry out for the ecological parameters is similar to the
one we develop for the forcing parameters in the GCM model. Ecological models,
and more specifically metapopulation models, often deal with species conservation
management. Then one is interested in finding the parameter change that supports the
population that has a large extinction risk. Our method selects directions of parameter
change that have a large effect. Since we work with small parameter perturbations the
outcome has the nice linear property that a large negative effect is accompanied by a
large positive effect in the opposite direction. A large effect in state space does not
mean automatically a large effect for the population with an extinction risk, but we
expect to do better by restricting us to parameter perturbations that are effective in a
short run, than just taking a random parameter change. In a way our sensitivity analysis
is bent in the direction of becoming a conservation management tool.

1.3 Scope of the method
A systematic uncertainty analysis of climate models has not been developed up to the
present because of the previously pointed out reason of the required large scale com-
puting capacity. With this research, aimed at finding effective parameter perturbations,
we explore the possible relationship that could exist between effective parameter per-
turbations of the climate and effective perturbations of the atmospheric circulation over
a short time period (a few days) during which solutions near the reference orbit have
a strongly divergent character. Before applying this to a realistic model, it is tested
in a low dimensional model: the Lorenz 63 equations. The results (chapter 2) justify
a further application to a large scale model with a more complicated chaotic attractor
(chapter 3). This model is of a size that the random search method is the only existing
alternative to be taken in consideration. However, the success rate of finding a para-
meter perturbation that yields a large climate change is very low. At this point the pro-
posed method scores significantly better. Next a new class of problems is investigated
that deals with climate driven natural processes. This time not the climate parameters
will be perturbed but the process parameters. We aim at biological processes in par-
ticular interacting biological populations living in a fragmented habitat (chapters 4 and
5). Again, we start with a simple ecological model with only few parameters. Also for
the climate a simple model is chosen, the Lorenz 84 equations. Once more, our method
turns out to give better results than the random search method. The fact that the results
hold for three different types of strange attractors, may indicate that the method holds
for a class of systems with a certain type of chaotic attractor.

In search for an efficient method to find effective parameter perturbations, the
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Lorenz 63 model is used as a test case. This model contains only two regimes. Both
regimes can be related to an unstable equilibrium. We first followed Corti and Palmer
(1997): using Lagrange multipliers, we calculated the parameter perturbation vector
that gave the largest systematic perturbation into the direction of the vector that con-
nects the two equilibria of the model. Giving the model as large a perturbation as
possible into the direction of one regime might result in more frequent visiting in that
particular regime. However, it turned out that these parameter perturbations were not
so effective in causing change in the regime behaviour in a long simulation. A second
attempt is made by first doing a random search. The Lorenz 63 model does not require
much computation time, so a sufficiently large number of random perturbations can
be made for the method to cover the full range of parameter perturbations. The most
effective parameter perturbations are then selected. Use is made of a visualizing tool
to see what effect these perturbations have. We follow the orbit of a set of systems that
differ only in parameter values. The start is at a sphere of parameter perturbations and
with the initial state being a point at the reference orbit. After a short integration of
the system linearized at the reference orbit, the set of solutions is transformed from a
point into an ellipsoid at end time in state space, with the end point of the reference
orbit as centre. This ellipsoid shows the deviations from the reference orbit that are
possible. So the deviations caused by the effective parameter perturbations lie some-
where within this ellipsoid. After observing different areas of the attractor, it turns out
that the effective parameter perturbations coincide with the first singular vector at some
points. This occurs at time intervals right after a short orbit had been through a highly
sensitive stage (with a large singular value). Our hypothesis is that singular vectors
that correspond to a low singular value directly after such a passage are likely to be
effective parameters. This hypothesis has been tested in the Lorenz 63 model.

This method of finding effective parameter perturbations is thus based on empirical
findings. We have no theory supporting the hypothesis, we only compare this newly de-
veloped adjoint method with a random method in various models. The method proved
to be successfull for the Lorenz 63 model. Since we can select parameter perturba-
tions that are more likely to be effective by using only one reference run of the climate
model, the method can be used in a large scale model with many parameters. It puts
us in a position of finding effective parameter perturbations in more realistic climate
models. We use the T21QG atmospheric model for this purpose. Our method has a
higher success rate in finding effective parameter perturbations than the fully random
method has. However it is evident that finding the most effective perturbation remains
difficult within such a large scale model.

To extend the scope of our method we apply it to a different class of dynamical
systems from the natural sciences: we select a herbivore-predator population model
driven by a simple atmospheric system, the Lorenz 84 model. In this model only five
biological parameters are perturbed, the same number of parameters as in the Lorenz
63 model. Once more, the adjoint method proves to be efficient in finding effective
parameters that change the behaviour of the populations. From these one can make
a further selection and choose the ones that support the herbivore population. A next
step would be to test the method in a more complicated metapopulation model, with
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far more parameters, which may be the subject of a subsequent study.

1.4 Outline of the thesis
In this thesis, we carry out a parameter sensitivity study in two atmospheric models: the
Lorenz 63 model (Lorenz, 1963) and the quasi-geostrophic three-level T21QG model
(Marshall and Molteni, 1993). Moreover, we consider a metapopulation model, the
Rosenzweig-MacArthur system (Rosenzweig and MacArthur, 1963), which is driven
by the Lorenz 84 atmospheric equations (Lorenz, 1984).

In chapter 2, the Lorenz 63 model is used as a case study. This model consists
of three state variables and contains only two regimes. This makes it easy to analyse.
With the original parameters, these two regimes are equally populated as it is verified
in a long simulation. The first EOF is the vector connecting the two equilibria in the
regimes and the PDF of the projection onto this EOF is a bimodal function. Parameter
perturbations can cause assymmetry in the model. One regime can be visited more at
the expense of the other and the dynamical behaviour becomes asymmetric: a climate
change occurs. We study the effect of a 5% perturbation in each of the parameters.

A method is developed that selects parameter perturbations that are most likely to
cause a large climate change. This selection is based on the short term dynamics. The
PDF that expresses the degree of asymmetry as a result of random perturbations, is
unimodel with a maximum at zero, i.e. no asymmetry. The most effective parameter
perturbations, i.e. perturbations that cause the largest climate change are in the tail
of the PDF. They are first found using a random method. We then make short term
integrations with these. The integrations are so short that the linear approximation of
the model is still sufficiently accurate. It turns out that at some points on the attractor,
these parameter perturbations collide with the first singular vectors. This occurs in time
intervals right after the short orbit has passed through a sensitive stage, that is after the
singular value had grown to a very large value. Now we make 50000 long simulations,
where this time the parameters are perturbed with the (scaled) singular vectors, selected
on the basis of their singular value. We compare the two methods and it turns out that
our method, which we call the adjoint method, is more efficient in selecting effective
parameter perturbations. It hardly draws any perturbations that give no climate change.

After these findings in a simple atmospheric model, we test the adjoint method in
a more realistic model, the quasi-geostrophic three-level T21QG model, described in
chapter 3. The T21QG model integrates prognostic equations for potential vorticity. It
consists of 1449 state variables and contains several regimes, which can be identified by
computing the EOFs. The first EOF is closely related to the North Atlantic Oscillation
(NAO), which is a pattern that is important for the climate in western Europe. Changes
in the regime behaviour could indicate changes in the climate. In this study, only the
forcing parameters will be perturbed. The forcing is determined by taking the average
of a large number of vorticity tendencies using observed atmospheric fields. These
average tendencies should be equal to zero, the forcing term is chosen such that it
compensates the deviation from zero. Again, we assume that the uncertainty in the
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forcing parameters is 5%.
We compare the random method with the adjoint method as developed in the con-

text of the Lorenz 63 model. The vector containing the forcing parameters has a dimen-
sion of 1449 (equal to the dimension of the system). This is considerably higher than
in the simple Lorenz 63 model. Since this model takes up more computational time, it
is only feasible to make 1000 different model simulations for each parameter choice.
To carry out these simulations we use the high performance computing facility at the
European Centre for Medium range Weather Forecasts (ECMWF), where it is possible
to make parallel runs. One run takes approximately 7 hours in real time and we are able
to make 32 runs simultaneously. The change in climate is measured, using the first few
Empirical Orthogonal Functions. For each integration step, the streamfunction can be
plotted onto the EOFs, giving an anomaly in each EOF direction. A time series of
the anomalies can be computed for each EOF. Then, PDFs can be made of these time
series. A change in the PDF, such as a shift or a change in shape, indicates climate
change. It turns out that the parameter pertubations causing the largest climate change
in terms of the sum of the changes in the PDFs 1 to 6, also causes the largest change
in just the PDF of EOF1. So changes in the PDF of the anomalies into the direction
of the first EOF only can be used as an indicator of climate change. When compar-
ing the random method with the adjoint method, it turns out that almost all parameter
perturbations drawn with the random method yield hardly any climate change at all.
The singular vectors found with the adjoint method are more effective in changing the
regime behaviour, 35.7% of the perturbations found are more effective than any of the
random perturbations. This means that the random method does not select parameter
perturbations close to a highly effective perturbation. Clearly, the number of 1000 ran-
dom runs is much too low. For this model the most effective perturbation might still not
be within reach using the adjoint method. However, we show that, although hampered
by the large size of the parameter set, the adjoint method reveals the possibility of a
much larger climate change than the random method.

In chapters 4 and 5 we study a metapopulation model, which is coupled to the
simple atmospheric Lorenz 84 model. It consists of two patches occupied by two
populations having a prey-predator relation. The intrinsic growth rates and the carrying
capacities are made seperately dependent on climate fluctuations. The parameters that
will be perturbed are the intrinsic growth rates of the herbivores, the death rates of the
predators and the migration rates of the herbivores. Herbivore-predator interaction may
show cyclic behaviour and phases of very low herbivore population size may occur,
bringing the population in a critical state. Due to climate fluctuations or to the intrinsic
cyclic dynamics of the herbivore-predator system the two herbivore subpopulations
may for some time, separately or jointly, get at a low level. A parameter sensitivity
study increases the value of the modelling effort as it reveals which elements of a model
have a large effect upon the outcome. Also, in terms of conservation management,
it is important to find out which (small) perturbations in parameters have the most
influence on population sizes. When the means are at hand to improve conditions for
certain populations, model analysis can help to find a useful solution. Changes in the
survival chance of the populations for different parameter values are monitored using
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fifth percentiles. The fifth percentile is the value below which 5 out of 100 values of
the population size taken are found in a long time series with fixed time intervals. The
higher this fifth percentile, the lower the extinction risk is. A rise in the fifth percentile
indicates that the conditions for the corresponding species have improved.

In chapter 4 predator-prey models with different side conditions are investigated.
We start with a model in which predators are not present and the herbivores can migrate
between the patches. The carrying capacities depend on the climate fluctuations. We
take two different, uncorrelated, time series of the climate for the patches and analyse
the influence of the migration rate. It turns out that increasing the coupling between the
patches, does not improve the local conditions for the species. The degree of coupling
between the two patches does however influence the speed of recolonization in case
of full local extinction. Next, predators are added to the model. The same time series
of the climate is used for the two patches, and now the climate acts upon the intrinsic
growth rates. The instrinsic growth rate of the herbivore in the second patch is three
times as large as the one for the herbivore in the first patch. Furthermore, the carry-
ing capacity of the herbivore is twice as large in patch 1. It turns out that this makes
the second herbivore more vulnerable for extinction. The goal is to improve the con-
ditions for the herbivore in patch 2 by increasing the migration rate of the herbivores
and/or increasing the death rates of the predator at the two patches. Changing different
parameters takes a certain amount of effort. Given the cost per unit of changing a pa-
rameter and given a fixed effort, an optimal solution can be found. For the parameter
perturbation that improves the conditions for the herbivore the most, the predator in
patch 1 appears to die out. Lastly the model is modified by allowing the predators to
migrate as well. Increasing the death rate of the predator in patch 1 shows little effect,
increasing it in patch 2 has a slightly positive effect. Increasing the migration rate of
the herbivores has a positive effect on the herbivores in patch 2, but a negative effect
on the herbivores in patch 1. Small values of the migration rate of the predators has
a negative effect on the herbivores of both patches, but after it has exceeded a certain
value, the effect stabilizes for the herbivore in patch 1 and has a positive effect on the
herbivores in patch 2. Depending on which herbivore needs to be supported, a choice
should be made. These findings show that conservation measures may bear the risk of
unwanted side effects.

In chapter 5 again only herbivores can migrate between the two patches and the
intrinsic growth rates are influenced by climate fluctuations. We now consider a set
of five parameters that can be perturbed; the intrinsic growth rates of the herbivores,
the death rates of the predators and the migration rate. We assume an uncertainty of
5% in the parameters. The adjoint method, as used in atmospheric models in chapters
2 and 3, is now tested on this metapopulation model. We want to find the parameter
perturbations that influence the long term behaviour of the model the most. Our aim
is the conservation of the herbivores, so we want to find the perturbations that favour
their populations most in the assumption that this will result in a lower extinction risk.
It turns out that the selected singular vectors improve the conditions for both herbivores.
When comparing the adjoint method with the random method, it shows that the adjoint
method draws parameter perturbations that are very effective. The selected singular



1.4. Outline of the thesis 15

vectors lie within the range of most effective parameter perturbations. It is remarked
that this climate driven metapopulation model is still of such a small scale that the best
parameter perturbation can still be approximated using a numerical scheme such as the
conjugate gradient method (see e.g. Press et al., 1986).
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Akçakaya, H.R., 2000a. Viability analyses with habitat-based metapopulation models.
Population Ecology, 42, 45-53.
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CHAPTER 2

Finding the effective parameter
perturbations in atmospheric models;

the Lorenz 63 model as case study

Climate models contain numerous parameters whose numeric values are uncertain. In
the context of climate simulation and prediction, a relevant question is what range of
climate outcomes is possible given the range of parameter uncertainties. Which pa-
rameter perturbation changes the climate in some predefined sense the most? In the
context of the Lorenz 63 model, a method is developed that identifies effective parame-
ter perturbations based on short integrations. Use is made of the adjoint equations to
assess the sensitivity of a short integration to a parameter perturbation. A key feature
is the selection of initial conditions.

2.1 Introduction
Complex numerical models are used to make expectations for the earth’s future cli-
mate. The reliability of these expectations is unknown. One contributing factor is the
existence of uncertain model parameters which leads to uncertainties in the outcome of
the simulations. Ideally one would like to quantify these uncertainties. In the last IPCC,
2001, it is stated that a systematic evaluation of the effect of parameter uncertainties
on the simulation of the present climate and the transient climate response is urgently
needed. A direct approach, perturbing parameters and making additional climate simu-
lations, is infeasable due to computational constraints. Many expensive simulations are
required since the simulated climate is bound to be more sensitive to some parameter
changes than to others. It would therefore be of great practical use to be able to identify
effective parameter perturbations a priori on the basis of short integrations. However,
it is not at all clear that this is possible. Some previous studies shed light on this issue.

Corti and Palmer (1997) presented evidence that sensitivities based on short term
integrations are relevant for changes in long term statistics. They calculated for a quasi-
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geostrophic atmospheric model perturbations to initial conditions that maximize the
projection of the perturbations after five days onto a particular pattern, the NAO or
PNA in their case. Next they averaged these optimal perturbations of 2000 initial con-
ditions. This averaged perturbation was put on the right hand side of the equation as
an additional time-invariant forcing. The probability density function (PDF) of the am-
plitude of the PNA pattern was determined for the reference and the perturbed forcing
from a long integration. The result was that the PDF of the PNA pattern changed a
lot due to the forcing perturbation and more so than with a forcing perturbation in the
direction of the PNA pattern itself. This result suggests that in order to find parameter
or forcing perturbations to which the climate is sensitive, use can be made of the sensi-
tivity of short term evolutions to such perturbations. In our terminology, forcing terms
refer to parameters in the tendency equations that are not multiplied by state variables.

Lea et al., (2000) also worked on the idea that short term evolutions can be used
for a sensitivity analysis of the climate. In the Lorenz 63 model (Lorenz, 1963) a brute
force method was used to assess the effect of changes in parameter r on the climate
mean. The climate sensitivity was then measured in terms of Δz̄∞

Δr , where z̄∞ is the
average value of variable z over a time-interval of length τ , as τ → ∞. They found
that an intermediate time scale τ∗ exists for which adjoint calculations to determine
Δz̄τ∗
Δr , ensemble averaged over a set of initial conditions, gives a reasonable estimate

of Δz̄∞
Δr . This result is another indication that it makes sense to try to identify effective

parameter perturbations on the basis of short term integrations.
Hall (1986) showed the potency of using the adjoint equations to determine climate

sensitivities by determining the sensitivity of the global mean surface air temperature
for variation in different model parameters of an atmospheric model with prescribed
sea surface temperatures. Using 10 day integrations, the sensitivities estimated with the
use of adjoints agreed within 20% to the sensitivities obtained directly by rerunning the
model. Question remains whether this 10 day estimate provides a reasonable estimate
for the sensitivity of the temperature averaged over a 30 year period. Also, it is not
clear if the adjoint equations yield to useful sensitivities for longer integrations, since
the atmosphere is a chaotic system, of which the evolution sensitively depends on small
changes in the initial condition.

In this paper we develop an efficient method that can identify parameter perturba-
tions on the basis of short term integrations, that cause, with high probability, large
changes in the simulated climate. This way, estimates can be obtained of the range of
possible climate outcomes given the uncertainties in model parameters. Changes in the
probability of certain types of circulations that have great influence on a regional cli-
mate are the main focus. The method is developed in the context of a simple numerical
model used as a climate metaphore, namely the Lorenz 63 model, and, motivated by
the studies mentioned above, is based on the effect of parameter perturbations on short
term evolutions.

In Section 2.2 the modified Lorenz 63 model and its characteristics are described.
In Section 2.3 we describe the methods that we used to identify effective parameter
perturbations in the Lorenz 63 model. (Effective parameter perturbations are the para-
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meter perturbations that change model simulations the most.) Section 5.5 contains the
conclusions and discussion.

2.2 Lorenz 63 model
We take the Lorenz 63 model (Lorenz, 1963) as a climate metaphore. It is described by
three differential equations, describing the time evolution of state variables x, y and z
and contains three parameters, σ′, r′ and b′. Following Palmer (1999), two additional
parameters c′x and c′y are introduced to break the symmetry of the solution.

ẋ = −σ′x+ σ′y + c′x,
ẏ = −xz + r′x− y + c′y, (2.1)
ż = xy − b′z.

For certain parameter settings, the model solution consists of irregular transitions be-
tween two unstable equilibria, which might be thought of, in meteorological terms,
as representing blocked or zonal flow regimes. If the parameters in the model are set
at their standard values, (σ′, r′, b′, c′x, c

′
y) = (10, 28, 8

3 , 0, 0) = (σ0, r0, b0, cx0, cy0)
the two regimes are equally populated. To characterize their population, we deter-
mine from a long simulation the probability density function (PDF) along the vector
connecting the two regimes. Prior to this, the time series is low-pass filtered with a run-
ning mean of one time unit. The resulting PDF clearly shows the existence of equally
populated regimes, see Figure 2.1.

Figure 2.1: Probability density function of low pass filtered time series of the projection
onto the vector connecting the two regimes, for the Lorenz 63 model with standard
parameter values.

A parameter γ, measuring the asymmetry, is introduced. Its value is obtained by
integrating the PDF over the left half of its domain, subtract it from 0.5 and multiply
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by 2. A value of 0 corresponds to a symmetric PDF, which is obtained for the standard
values, values of ±1 are limiting values corresponding to the population of one regime
only. Changes in the population of the regimes are of interest, since regime behaviour
in climate models has a large influence on regional climates. When compared with
blocked or zonal flows, more blocked flows near Europe causes dryer and warmer
periods in summer or dryer and colder periods in winter for Western-Europe and more
wet and stormy weather to the north and south of the blocking (Oortwijn et al. 1995).

We assume that the model parameters are uncertain within ±5% of their standard
values (c′x and c′y can vary ±1). For mathematical convenience, this is accomplished
by choosing a new set of parameters, (σ0+0.5σ, r0+1.4r, b0+ 2

15b, cx0+cx, cy0+cy),
where the parameters σ, r, b, cx, cy can vary between [−1, 1].

2.3 Finding the effective parameter perturbations
The question we wish to address is the following: what is the maximum value of γ
possible, given the specified uncertainties in the parameters of the Lorenz 63 model.
Or, in meteorological terms, does a model allow a climate solution with more blocked
flows, leading to more frequent cold spells in winters in Europe for instance. One
approach to determine this maximum value of γ, is by the use of the direct method
(Dickinson et al., 1976).

2.3.1 The direct method
The direct method is a ’brute force’ method; random parameter perturbations are drawn
from a uniform distribution on a five-dimensional unit-sphere in parameter space, cen-
tered around the standard values ((σ0, r0, b0, cx0, cy0) = (10, 28, 8

3 , 0, 0)). Note that
because of the special choice of the parameters, points on this unit-sphere correspond
to parameter perturbations that lie within the specified range of 5% uncertainty. For
each of these random perturbations, γ is estimated from a long integration (80000 time
units). The length of 80000 time units allows γ to be estimated within an absolute error
of about 0.001. A total of 50000 random parameter perturbations were evaluated. The
values of γ obtained are displayed in the form of an estimate of the probability density
function of γ in Figure 2.2 (solid line). The PDF estimate was obtained by dividing the
range of γ, [−0.10, 0.10] into 100 bins, counting the number of occurences in each bin
and finally divide by the total number of draws.

The PDF of γ is centered around zero, is uni-modal and is bounded from below
by −0.08 and above by 0.08. The maximum is found at zero, which means that the
most probable climate solution, given the uncertainties in the parameters, has equal
probabilities for both regimes. However, climate solutions are possible with 8% more
occurences of one regime. The PDF indicates that the chance of picking a parameter
perturbation that leads to such an asymmetric solution is small. Most parameter per-
turbations lead to fairly symmetric solutions. This means that many draws are needed
to estimate the range of possible values of γ. Therefore, it would be of great practical
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Figure 2.2: Probability density function of asymmetry γ of randomly chosen parameter
perturbations (solid line), together with an idealized PDF (dashed line).

use to be able to draw effective parameter perturbations, that is perturbations that most
effectively change γ, a priori, also since long simulations are computationally demand-
ing. Ideally one would like to draw effective parameter perturbations only, as indicated
by the idealized PDF in Figure 2.2 (dashed line). We wish to determine these on the
basis of short model simulations. That this might be possible is based on the notion
that systematic changes in short term evolutions change long term statistics.

2.3.2 The adjoint method

Effective parameter perturbations and short term integrations

To follow up on this idea, we choose two sets of effective parameter perturbations from
the tails of the distribution of γ in Figure 2.2, which we call EP+ and EP−, and
investigate the effect of these perturbations on short model evolutions in order to find
a means to detect these effective parameter perturbations a priori on the basis of short
model evolutions alone. Our short integrations take 2 time units. This is sufficiently
long for a regime transition to take please as well as sufficiently short for the linear
approximation to still be accurate enough in most cases. For a realistic atmospheric
model, this range would be 3 to 5 days, (Oortwijn et al., 1995).

In Figure 2.3 two short term evolutions of two time units, for unperturbed param-
eters, referred to as a reference orbit are plotted. In 2.3 (a) and (c) we also plotted the
end points of additional evolutions from the same initial condition but with randomly
perturbed parameters (grey and black points). In 2.3 (b) and (c) the end points of orbits
with the selected perturbed parameters EP+ (black) and EP− (grey) are plotted. The
two regimes are indicated by the large grey and black dot. The black points in Fig-
ure 2.3 (a) and (c) are calculated using the non-linear equations (1), whereas the grey
points in Figure 2.3 (a) and (c), and EP+ and EP− in 2.3 (b) and (d) are calculated
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using a linear approximation of the equations around the reference orbit, referred to as
the tangent linear equations.

Using the tangent linear equations, a cheap method exists to calculate the parameter
perturbation yielding the largest deviation at the end of the reference orbit. The method
is based on a Singular Value Decomposition (SVD) of the linear mapping of the para-
meter perturbation onto the changes in the end point of the reference orbit. The first
right singular vector corresponds to the parameter perturbation and is mapped onto the
first left singular vector which corresponds to the direction of largest change of the end
point of the reference orbit. The corresponding singular value equals the length of the
left singular vector. The method is described in the appendix and is very similar to the
procedure to find the perturbation to the initial conditions yielding the largest change
at the end of the reference orbit (Barkmeijer, 1996).

The linearly evolved random parameter perturbations (grey points) in Figures 2.3
(a) and (c) form an ellipsoid centered around the end point of the reference orbit (black
line). The deviation of the black cloud from the grey one is an indication of the limited
accuracy of the linearized solution. This accuracy depends on the magnitude of the
deviations from the reference orbit (δg, see appendix) which grow in time, for some
reference orbits faster than for others.

Focussing on the effective perturbationsEP+ andEP−, we observed that for some
reference orbits they don’t lie in distinct areas of the cloud (Figure 2.3 (b)), but that for
others EP+ and EP− are clearly separated and lie on the end points of the first left
singular vector, as shown in Figure 2.3 (d). Thus for reference orbits like this one, the
first right singular vector is likely an effective parameter perturbation.

The only problem is how to select orbits such as in Figure 2.3 (d) without any
knowledge about EP+ and EP−. By shifting reference orbits in time one timestep
after the other and examining the behaviour of EP+ and EP−, we discovered that the
separation along the first singular vector takes place just after an episode when the first
singular value has grown to very large values. As an illustration of this, we have plotted
the first singular value for subsequent reference orbits in time in Figure 2.4. Every now
and then the singular value exceeds 8000 and comes down again below 220. At this
moment, EP+ and EP− are separated along the first left singular vector, and the
first right singular vector is likely an effective parameter perturbation. This emperical
finding gives us a recipe to draw potentially effective parameter perturbations a priori:

1. shift reference orbit in time

2. select reference orbit according to evolution of first singular value (after a period
of extensive growth)

3. determine for that reference orbit the first singular vector using the adjoint method,
use this as parameter perturbation

For the computation of the first singular vector and value corresponding to a refer-
ence orbit, one needs to calculate this reference orbit (this is a non linear integration of
2 time units), the tangent linear and the adjoint equations (both at the cost of 2 times a
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Figure 2.3: The black line is a reference orbit of 2 time units in the 3D space space of
the Lorenz 63 model. The two regimes are indicated by the large grey and black dot.
In (a) and (c) the grey and black points are resp. the linearly and non-linearly evolved
random parameter perturbations, all from the same initial condition. In (b) and (d)
the grey and black points are EP− and EP+ resp. In (b) EP− and EP+ don’t lie
in distinct area’s. In (d) EP− and EP+ are clearly separated and lie on the ends
of the first left singular vector. Note also that the change induced by the parameter
perturbations is not directed along the vector connecting both regimes, but instead is
almost perpendicular to it.
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non linear integration of 2 time units). This is a total cost of 5 times a non linear
integration of 2 time units. In Figure 2.4 it is shown that on average the first singular
value exceeds 8000 4 times per 200 shifts of the reference orbit in time. So on average
one needs to shift the reference orbit in time 50 times before finding a suitable initial
condition. So the total cost to find an effective parameter perturbation is 50 × 5 × 2 =
500 time units of a non linear integration, which is only a fraction of the 80000 time
units needed for one long term non linear climate integration. Since this method of
finding effective parameter perturbations has so little computational cost compared to
one long term non linear integration, it is relevant to use this method to select effective
parameter perturbations a priori instead of perturbing at random and making a long
term integration for each of these perturbations.

Figure 2.4: A plot of the first singular value which measures the maximum change
possible in the end state of the reference orbit. The reference orbit has a duration of 2
time units and is shifted in time in discrete steps of 0.1 time unit.

Effectiveness of the adjoint method

To evaluate the effectiveness of the parameter perturbations determined from the first
singular value of selected initial conditions as described above, we made long integra-
tions of 80000 time units for a total of 50000 parameter perturbations and calculated
γ for each one of these, as we did with the direct method. The PDF of γ is shown in
Figure 2.5 (a).

The solid line is the PDF of γ of randomly chosen parameter perturbations, the
dashed line is the PDF of γ of the potentially effective parameter perturbations. It is
quite clear that the adjoint method applied to specially selected initial conditions draws
almost no parameter perturbation that leads to a symmetrical PDF of the Lorenz 63
model (γ = 0) and has a much higher probability to draw effective parameter pertur-
bations than the random method does. In Figure 2.5 (b) the cumulative distribution
of both the direct (solid line) and adjoint (dashed line) method are shown. This is the
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probability to draw a parameter perturbation that yields to |γ| ≥ x. For example, the
probability to draw parameter perturbations that gives an asymmetry higher than 6%,
that is |γ| ≥ 0.06 with the direct method is 7.7%, whereas with the adjoint method this
probability is 17.8%, which is 2.29 times as high. This result is proof that sensitivities
based on short integrations contain valuable information on the sensitivity of long term
statistics to parameter perturbations, at least for the Lorenz 63 model.

a b

Figure 2.5: (a) Probability density function of the asymmetry γ. The solid line is the
PDF of randomly chosen parameter perturbations, the dashed line is the PDF of pa-
rameter perturbations calculated with our adjoint method. (b) Cumulative distribution
of both the direct (solid line) and adjoint (dashed line) method. This is the probability
to draw a parameter perturbation that yields to |γ| ≥ x.

Inspecting the PDF of the adjoint method in Figure 2.5 (a) again, it seems that
there are two groups of parameter perturbations, one more effective than the other.
These perturbations might be related to two sets of reference orbits from which they
were calculated that lie on different areas of the attractor. In Figure 2.6 the 25000 initial
values of the reference orbits are plotted that were used to calculate the perturbations
(we used both the first singular vector and the opposite signed first singular vector as
parameter perturbations to get 50000 draws).

We can divide the initial values broadly into two sets. Set 1 contains the initial
conditions in the centre part, set 2 contains the two groups of initial values at the left and
right side of the attractor. We made separate PDF’s of γ of these two sets, see Figure
2.7. The dashed line is the same PDF as in Figure 2.5 (a), for all the initial conditions,
the dotted dashed line is the PDF for set 1 and the dotted line for set 2. The reference
orbits with initial values from set 1 yield more effective parameter perturbations than
set 2. Unfortunately, this is an observation after the fact and cannot be used to make
the adjoint method more effective.

We did an extra experiment to make sure that especially the initial conditions, se-
lected after the reference orbit passed through a sensitive area on the attractor yield
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Figure 2.6: Initial conditions of the reference orbits just after an episode when the first
singular value has grown to very large values.

effective parameter perturbations. For this, we took the first singular vector as parame-
ter perturbation for reference orbits 0.1 time unit apart irrespective of the value of the
first singular value. For 50000 perturbations γ was calculated on the basis of 80000
time unit long trajectories. This gave us the PDF of γ shown in Figure 2.8 (a) with
a dotted dashed line. Clearly this method is not optimal to draw effective parameter
perturbations. Although this method still gives less ineffective parameter perturbations
then the random method, it also gives less effective ones. Furthermore, the peaks of the
PDF correspond to smaller values of γ than the two highest peaks of the dashed PDF
based on the selection of specific initial conditions.

In another experiment to verify the effectiveness of our adjoint method, we took
only first left singular vectors as our parameter perturbations, with very large corre-
sponding singular values (greater than 8000). Again, for 50000 perturbations γ was
calculated on the basis of 80000 time unit long trajectories. This gave us the dotted
PDF in Figure 2.8 (b). This is hardly an improvement of the previous PDF in Figure
2.8 (a). Although there are less parameter perturbations drawn that give a value γ close
to 0, there are also no parameter perturbations that give a value |γ| greater than 0.06.

Another interesting aspect is the contribution of the forcing parameters cx and cy to
the asymmetry of the model. To illustrate this, we project the first singular vector onto
the (cx, cy)-plane and calculated the percentage of this length compared to the total
length of the first singular vector. We did this for all the singular vectors drawn with the
adjoint method, that were used as parameter perturbations. We plotted a PDF of these
percentages in Figure 2.9. The solid line represents the percentages of all the singular
vectors drawn with the adjoint method, the dashed line represents the percentages of the
singular vectors that cause an asymmetry higher than 6%. The solid line has two large
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Figure 2.7: Probability density function of the asymmetry γ. The dashed line is the
PDF of parameter perturbations of the adjoint method (as in Figure 2.5 (a)), for all
initial conditions shown in Figure 2.6. The dotted dashed line is the PDF for the set of
initial conditions in the centre part in Figure 2.6 (set 1) and the dotted line is the PDF
for the set of initial conditions at the left and right side of the attractor in Figure 2.6
(set 2).

peaks, one around 45% and one around 92%. The dashed line has one peak around
92%. This does indicate that the forcing parameters cx and cy play an important role
in causing asymmetry, however, it is also possible to cause large asymmetry with a
contribution of cx and cy of for instance 60%, so it is useful to take all parameters in
consideration when making perturbations.

To conclude, the adjoint method yields effective parameter perturbations for spe-
cific initial conditions that can be selected a priori based on the history of the behaviour
of the first singular value.

2.4 Conclusions and discussion
In this study we set out to develop an efficient method to identify parameter perturba-
tions that cause large changes in the simulated climate. The method is based on the
sensitivity of short integrations to parameter perturbations. These sensitivities can be
calculated efficiently using the adjoint method (Errico, 1997). The method is developed
in the context of the Lorenz 63 equations. It turns out that for specific initial conditions,
the parameter perturbations that give rise to the largest changes in the short term, also
tend to be effective in changing the long term climate statistics as measured by the
asymmetry of the PDF. A priori selection of these special initial conditions is possible.
They tend to occur just after the trajectory has passed through a very sensitive area
where small parameter perturbations can cause the largest changes in the short term
evolution. We don’t know why this is, but we do know that parameter perturbations for



32 Finding the effective parameter perturbations in atmospheric models

a b

Figure 2.8: Probability density functions of the asymmetry γ. The solid line in (a) and
(b) is the PDF for the direct method (as in Figures 2.2 and 2.5 (a)). In (a) and (b) the
dotted dashed line is the PDF of γ taking as parameter perturbations the first singular
vector of arbitrary initial conditions. The dotted PDF in (b) is the PDF where para-
meter perturbations correspond to first singular vectors with very large corresponding
singular values only.

reference orbits with the largest short term sensitivities are not effective in perturbing
the climate solution.

Since this method to select parameter perturbations within the specified uncertain-
ties has a higher probability for drawing effective parameters than the direct method,
it is more likely that a good estimate of the largest changes possible in the simulated
climate can be obtained with this method when only making a few long term integra-
tions. One provision must be made; adjoint equations of the model under consideration
are needed to determine the short term sensitivities efficiently. Only few climate inte-
grations can be made for realistic models due to computational contraints. It pays to
identify potentially effective parameter perturbations a priori. Probably more so for
higher dimensional systems. It is well known that for atmospheric models most per-
turbations to initial conditions are rather ineffective since they decay in most of the
dimensions in the state space. For similar reason, most parameter perturbations are
bound to be ineffective. There is a relatively low number of unstable directions.

The costumary adjoint equations to estimate sensitivities of short term trajectories
to changes in the initial conditions need to be expanded to include the effect of changes
in parameters as well. A first step into this direction was taken by Barkmeijer et al.,
(2002) who included the effect of changes of the forcing terms in the right hand side
of the tendency equations. The most effective changes to the forcing terms for a given
reference orbit were coined forcing singular vectors.

In this study we have shown the relevance of short term sensitivities for the sen-
sitivity of long term statistics for parameter changes. Also Corti and Palmer (1997)
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Figure 2.9: PDF of the percentages of the length of the projection of the singular vector
onto the (cx, cy)-plane compared to the length of the singular vector, drawn with the
adjoint method.

presented evidence that sensitivities based on short term integrations are relevant for
long term statistics. In their study, they ensemble averaged over 2000 initial conditions
the perturbation to the initial condition that changed the projection of the end point of a
five day integration onto the PNA pattern the most and put their averaged perturbation
as a forcing perturbation on the right hand side of the equations. Although they noted
a large change in the PDF of the PNA pattern due to this forcing, question remains
whether this is the maximum change possible given the size of the forcing perturba-
tion. To answer this question in the context of the Lorenz 63 model, we did a similar
analysis. We determined parameter perturbations that maximize the projection of the
end points of the perturbed reference orbit onto the vector connecting both regimes.
For a total of 50000 initial conditions, we determined the mean parameter perturba-
tion. This mean perturbation was scaled to correspond to the specified uncertainty of
5%. This perturbation yields an asymmetry γ of only 5% of the maximum γ possi-
ble, indicating that just averaging optimal perturbations will not necessarily yield an
effective parameter perturbation. On the contrary, our results indicate that the initial
condition of the reference orbit matters.

Lastly, so far the method has only been tested in the context of the Lorenz 63
model. A natural next step is to evaluate the method in the context of a more realistic
atmospheric model. Work along these lines is on its way.
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Appendix: The tangent linear equations
Usually, the tangent linear equations are derived for deviations in the state space vari-
ables only. Here we include perturbations in model parameters as well. For this pur-
pose, we introduce the vector q, which consists of the vector x = (x, y, z) in state
space and the vector α = (σ, r, b, cx, cy) in parameter space, so

q =
(

x
α

)

q̇ =
(

ẋ
α̇

)
=
(

F1(x, α)
F2(α)

)
=
(

F1(x, α)
0

)
= F(q)

The tangent linear equations are derived as follows:

q̇ = F(q) ⇒ ˙(qr + δqr) = F(qr + δqr) ≈ F(qr) + Jδqr + O(|δqr|2)
⇒ q̇r + ˙δqr ≈ F(qr) + Jδqr

⇒ ˙δqr ≈ Jδqr

where J is the Jacobi matrix, qr denotes the reference orbit and where:

J =
∂F(q)
∂q

|qr =

(
∂F1(x,α)

∂x
∂F1(x,α)

∂α
∂F2(α)
∂x

∂F2(α)
∂α

)
|qr =

(
∂F1(x,α)

∂x
∂F1(x,α)

∂α
0 0

)
|qr ,

the tangent linear equations of the Lorenz 63 model (1) read:

˙δx = −σ′ · (δx− δy) − (x− y) · δσ′ + δc′x,
δ̇y = (r′ − z′) · δx− δy − x · δz′ + x · δr′ + δc′y,
δ̇z = y · δx+ x · δy − b′ · δz − z · δb′,
˙δσ′ = 0,
˙δr′ = 0,
˙δb′ = 0,
˙δc′x = 0,
˙δc′y = 0.

For a given reference orbit of duration T the tangent linear equations project pertur-
bations in vector q at initial time onto perturbations in q at final time. Formally, this
linear transformation can be represented by a matrix R: δq(T ) = R(0, T ) · δq(0), also
referred to as the tangent linear propagator. We only wish to assess the influence of pa-
rameter perturbations on the flow, not of perturbations in the initial conditions, which
means that δx(0) = 0 and δα(0) �= 0. To achieve this, projection matrices P1 and P2

are introduced which project vector q into parameter space or state space respectively:

P1q = P1

(
x
α

)
=
(

0
α

)
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P2q = P2

(
x
α

)
=
(

x
0

)
Using these matrices, a forward integration of the tangent linear equations can be
rewritten as:

P2RP1δq(0) = δx(T ) ≡ Sδq(0)

When δq(0) is limited to a hypersphere; δx(T ) lies on an ellipsoid. Now, for the length
of vector δx(T ) we can write

< δx(T ), δx(T ) >1/2=< Sδq(0), Sδq(0) >1/2=< STSδq(0), δq(0) >1/2

where <,> defines an euclidian inner product and ST is the transposed of S. This
length is maximized when δq(0) is the eigenvector of STS with the largest eigenvalue.
It corresponds to the vector of parameter perturbations that evolves into the major axis
of the ellipsoid at time T . The square root of the eigenvalue corresponds to the length
of the major axis and is an indication of the sensitivity of the reference orbit to changes
in the parameters.

In the literature, this vector is called the first right singular vector, the correspond-
ing eigenvalue the first singular value. This terminology stems from the singular value
decomposition of S, (see for instance Press et al (1986)). An arbitrary (m × n) ma-
trix S can be written as: S = UWV T , where U is a column-orthonormal (m × n)
matrix (containing the left singular vectors), W is an (n×n) diagonal matrix with pos-
itive and zero elements (the singular values) and V T is the transposed of orthonormal
(n × n) matrix V (containing the right singular vectors). These singular vectors are
eigenvectors of STS:

STSV = (UWV T )T (UWV T )V = VWUTUWV TV = VW 2V TV = VW 2

with eigenvalues equal to the squares of the singular values W . Matrix S projects the
right singular vectors onto the left singular vectors:

SV = UWV TV = UW.

Thus the left singular vectors are the axes of the ellipsoid.
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CHAPTER 3

Sensitivity to forcing parameters in the
T21QG atmospheric model

The way uncertainty in model parameters is handled determines for a large part the
quality of a climate forecast. It is important to specify and quantify the effect of
these uncertainties. In the context of the three-level quasi-geostrophic spectral T21QG
model, the sensitivity to forcing parameters is studied. It is relevant to identify the
vector of parameter perturbations that yields the largest climate change. A method is
presented that uses short term dynamical behaviour to identify the perturbations to the
forcing parameters that will affect the long term behaviour the most and result in the
largest change in the simulated climate. Climate change will be looked at in terms
of change in the strength of preferred circulation patterns. The tangent linear and ad-
joint equations are applied to consecutive short non-linear integrations to determine
the vector of parameter perturbations leading to the largest error growth in the state
variables over this short time interval. The model equations are extended with the pa-
rameter vector with vanishing time derivative for this purpose. The vector of parameter
perturbations leading to largest error growth is called the first singular vector. The cor-
responding singular value is a measure of this growth. Its value depends on the initial
condition as the sensitivity of the model solution to parameter perturbations varies over
the attractor. The first singular vector is potentially an effective parameter perturbation
leading to a large climate change when it is selected just after the system has passed
through a period of maximum error growth. This method to select forcing parameter
perturbations on the basis of the short term behaviour of the model, is compared with
a random selection of these perturbations. The rate of success of the selection method
based on short integrations is shown to be much larger.

3.1 Introduction

Uncertainty in the outcome of climate models is widely recognized (e.g. IPCC 2001,
Reilley et al., 2001, Forest et al., 2002, Allen, 2003, Murphy et al., 2004, Stocker,
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2004). A contributing factor is uncertainty in the model parameters. Many of the model
parameters are not exactly known so an uncertainty analysis should be part of a study
on the long term dynamics of the climate. We are especially interested in the range
of possible outcomes of the climate model, given a parameter uncertainty. It would
be an advantage to efficiently find the parameter perturbations that yield the extreme
outcomes. These parameter perturbations are called effective parameter perturbations.
It would save computing time if these can be found on the basis of the short term
behaviour of the model. For this purpose, the tangent linear and adjoint equations
are introduced. The question then is, to what extend can the short term behaviour of
the model be used to determine the long term statistics. For this purpose a method is
developed that detects the vector of parameter perturbations to which the system has
the highest sensitivity.

In Moolenaar and Selten (2004) this method of finding effective parameter pertur-
bations has been tested using the Lorenz 63 equations (Lorenz, 1963). The behaviour
on the chaotic attractor of this system was analysed by model runs that had a fixed
length and that were sufficiently short in time to allow a linear analysis based on the
adjoint equations. For each reference run the optimal parameter perturbation was com-
puted leading to the largest error growth. It turned out that for specific points at the
attractor this most effective parameter perturbation is frequently also a highly effective
parameter perturbation leading to large changes in the climate. When calculating con-
secutive short runs, the effective perturbations were found just after the reference run
had passed through a phase of strong error growth.

Adjoint models are powerful tools to estimate the sensitivity of model output with
respect to input, such as initial conditions and parameters. In particular, they can be
used to efficiently calculate the sensitivity to variations in any of the model’s parameters
(Hall and Cacuci, 1983). Errico (1997) gives a good description of the adjoint model
and its applications. With the adjoint equations singular vectors can be calculated.
These calculations are carried out over a sufficiently short time period, during which
the linearization is still holds. Singular vectors, also referred to as optimal finite-time
perturbations, were first introduced by Lorenz (1965).

Since the adjoint method developed in Moolenaar and Selten (2004), chapter 2 in
this thesis, proved to be an efficient method in the Lorenz 63 model, we now want
to test it in a more realistic atmospheric model. Our choice is the T21QG model.
This model has been used for adjoint sensitivity analysis with respect to uncertainty in
initial conditions, see e.g. Molteni and Palmer (1993), Oortwijn and Barkmeijer (1995)
and Barkmeijer (1996). As in the Lorenz 63 model, the T21QG model shows regime
behaviour. Whereas the Lorenz 63 model only has two preferred regimes, the T21QG
model contains several preferred flow regimes. Both models show sensitivity to initial
conditions. The sensitivity to the perturbation of parameters depends on the state of the
model. Consequently, the dynamics of the T21QG model show sufficient similarities
with the Lorenz 63 model to apply the adjoint method for finding effective parameter
perturbations. In the Lorenz 63 model all model parameters were perturbed, whereas
in the T21QG model only the forcing parameters are chosen.

The T21QG model is a spectral model. Such models are commonly used for a
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numerical analysis of the atmospheric circulation. In the spectral model (a type of
Galerkin method) each dependent variable is expressed in a (truncated) sum of orthog-
onal functions, the spherical harmonics. By this method, partial differential equations
are transformed into a set of ordinary differential equations for the coefficients of the
orthogonal functions, see i.e. Haltiner and Williams, (1980) and Press et all, (1986).
Spherical harmonics are described in Appendix A.

In the atmospheric circulation, preferred large-scale flow patterns, also referred
to as weather regimes, occur (Reinhold and Pierrehumbert, 1982). Regimes are usu-
ally defined by local maxima in the multi-dimensional Probability Density Function
(PDF) of states. An important part of the low-frequency variability of the atmosphere
can be captured in a low-dimensional space (D’Andrea and Vautard, 2001). The low-
frequency variability can be decomposed into Empirical Orthogonal Functions (EOFs).
The leading EOFs give the directions of the most variance and span the state space that
contains these regimes, (Haines and Hannachi, 1995, Marshall and Molteni, 1993). For
a long integration, the streamfunction can be projected onto the EOFs at fixed time in-
tervals (of one day). The amplitudes of these projections vary in time and PDFs of the
timeseries of the amplitudes can be approximated. Palmer (1999) hypothesized that
climate change due to a small imposed forcing will result in changes of these PDFs
in which the regimes remain present, while their duration and alternation may change.
We will use the PDFs of the dominant EOFs as a measure of climate change since these
EOFs are important for the local climate.

Fleming (1993) recognized the importance of determining the uncertainty in forc-
ing in climate models. He states that there is a need to establish a scientific methodol-
ogy for identifying and quantifying the impacts of uncertainty. Using a Monte Carlo
approach for this purpose is not feasable for large systems due to the required number
of runs and the number of forcing parameters that are uncertain. However, because it is
important to analyse parameter uncertainty, he still considers it as a a practical method
to start with. In order to make a comparison for our method based on local error growth
with a standard method such as the Monte Carlo method, we carry out a search for ef-
fective parameter perturbations by taking the best one from a set of randomly selected
perturbations.

Dymnikov and Gritsoun (2001) did a study in determining a climate system’s sensi-
tivity to small perturbations to an external forcing using a two-layer quasi-geostrophic
atmospheric model. They added an external forcing considered in the subspace of the
first 30 EOFs (Empirical Orthogonal Functions). They calculated the first and second
right singular vector of the response operator matrix which according to the linear the-
ory should correspond to the optimal forcing perturbations leadint to the largest change
in the model’s average state. This matrix evaluates the response of the average state
of the model to the perturbation. It is obtained from a 30000 day model run using
the response formula of Leith (1975) which is based on the fluctuation-dissipation the-
orem (Kraichnan, 1959). They carried out two integrations of 10000 days that were
perturbed with respectively the first and second (scaled) right singular vector as a forc-
ing perturbation. The perturbed runs were compared with the unperturbed run by the
changes in the average state of the system. It proved to be a good prediction of the
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response of the model to the small constant perturbations of external forcing. In our
study we are interested in changes in the PDFs of the dominant circulation structures,
not just the average state. Moreover, our method also applies to parameters that occur
in products with state variables in the governing equations.

To provide a reliable specification of the spread of possible regional climate chan-
ges, a large ensemble of climate predictions is needed, in which parameters are chosen
such that the widest range of uncertainties is captured (Murphy et al. (2004)). In a
first attempt to evaluate climate sensitivity due to anthropogenic climate change (as-
suming a doubled CO2 concentration), Murphy et al. (2004) compiled an ensemble
containing four million model versions, of an atmospheric model coupled to a mixed-
layer ocean, with randomly chosen multiple parameter perturbations. Parameters that
cannot be accurately determined from observations are perturbed within an uncertainty
range, specified by experts. It is assumed that the impacts combine linearly and that
each parameter has a uniform distribution within a range of values. They weighed the
model predictions of climate sensitivity according to the likelyhood that the simulation
of present-day climate is consistent with observations (the members of the ensemble
are not equally reliable). In this way they narrow the range of possible future global
mean temperature increase. As a next step, they propose to sample multiple parame-
ter perturbations since the assumption that individual parameter perturbations combine
linearly is unlikely to be valid at a regional scale. To increase the ensemble size, they
will make use of results from http://www.climateprediction.net where computers of
members of the public are used for simulation runs.

Stainforth et al., (2005) present results from the ’climateprediction.net’ experiment.
They emphasize that ensembles of climate prediction are needed to assess both chaotic
climate variability and model response uncertainty. Within a multi-thousand member
ensemble, parameters are altered within a range considered plausible by experts, al-
though they do stress that experts are known to underestimate uncertainty and these
ranges cannot be considered as absolute ranges. Two or three alternate values are used
per parameter and a simulation may have several parameters perturbed. Each member
of the ensemble quantifies the response of the model to a doubling of CO2 concen-
trations. They find that, when assessing the possible temperature change, most simu-
lations cluster around the value of the unperturbed model, suggesting most parameter
perturbations have little effect. This could be due to a limited impact of relevant pro-
cesses on sensitivity, the parameter ranges may have been estimated too small and/or
multiple perturbations may compensate each other when averaged. However, they do
show a large range of possible climate outcomes and that high sensitivities should not
be omitted. In future experiments a model with a fully dynamic ocean will be used.

In Section 3.2 the T21QG model is described and it is explained how EOF analy-
sis can be used for a parameter sensitivity analysis of the climate. In Section 3.3 the
model will be perturbed and the previously described adjoint method is applied to the
T21QG model. A set of 1000 climate runs is made, each with a perturbed forcing that
is expected to be effective with a high probability. These perturbations are selected
from short runs of the linearized system at the specific points of the attractor where the
singular value falls back from an extremely large value. In Section 3.4 the results of
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Section 3.3 are compared with other methods for searching effective parameter pertur-
bations, among which a random selection method. Section 5.5 contains the conclusions
of this study.

3.2 Climate sensitivity analysis using Empirical Orthog-
onal Functions

3.2.1 The T21QG-model
In the extratropics, the atmospheric circulation can be well approximated by quasi-
geostrophic equations. The quasi-geostrophic equations are filtered prognostic equa-
tions (gravity waves are absent) and can be written in terms of only one variable, the
quasi-geostrophic potential vorticity. Here, the quasi-geostrophic (QG) T21QG-model
is used, which is a spectral, 3-level model, as described by Marshall and Molteni
(1993).

For the potential vorticity a series expansion in spherical harmonics is made. The
time dependent coefficients of this expansion are the state variables of the model. The
series of spherical harmonics used in the representation of horizontal fields has a tri-
angular truncation at total wavenumber 21 (T21). The model integrates prognostic
equations for QG potential vorticity (PV) at 200 hPa (level 1), 500 hPa (level 2) and
800 hPa (level 3),

∂qk
∂t

= −J(ψk, qk) −Dk(ψk) + Sk, k = 1, 2, 3., (3.1)

where q is the potential vorticity (PV) and ψ the streamfunction, D is a linear op-
erator that represents dissipation, S is an artificial forcing, J the Jacobian, J(ψ, q) =
(∂ψ∂λ

∂q
∂μ− ∂ψ

∂μ
∂q
∂λ ), where λ is longitude and μ is the sine of latitude, and k is the index for

the different levels. Equation (3.1) is the vertical discretization of the quasi-geostrophic
potential vorticity equation (Holton, 1992)

(
∂

∂t
+ Vψ · ∇)(∇2ψ + f + f2

0

∂

∂p
σ−1 ∂ψ

∂p
) = 0, (3.2)

where Vψ is the non-divergent velocity, f0 is f at reference latitude 45◦N , f =
2Ω sinφ and Ω is the earth’s angular velocity, σ is a static stability parameter and p
is pressure. The dissipative and forcing terms have been added to represent the effect
of diabatic processes. The dissipative terms are described in detail in Appendix B. The
relative vorticity is the Laplacian of the streamfunction. Here PV is defined as

q1 = ∇2ψ1 + f −R−2
1 (ψ1 − ψ2),

q2 = ∇2ψ2 + f −R−2
1 (ψ1 − ψ2) −R−2

2 (ψ2 − ψ3), (3.3)

q3 = ∇2ψ3 + f(1 +
h

H0
) −R−2

2 (ψ2 − ψ3),
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where f = 2Ω sinφ is the planetary vorticity, R1 (= 700 km) and R2 (= 450 km)
are Rossby radii of deformation appropriate to the 200-500 hPa level and the 500-800
hPa level respectively, h is the orographic height and H0 (= 9 km) is a scale height.
At each level the quasi-geostrophic potential vorticity has 483 independent spectral
components, so that the model has 1449 degrees of freedom. It is assumed that the
multi-level field of PV is a linear function of the multi-level streamfunction, which is
invertible under appropriate boundary conditions.

3.2.2 Empirical Orthogonal Function (EOF) analysis
EOF analysis deals with a given set of data, in our case a time series of streamfunc-
tion values evaluated on a grid covering the northern hemisphere. One of the first to
introduce EOFs in meteorology was Lorenz (1956). It has turned out to be an effec-
tive means of representing climatological fields. It gives information on the variability
of the studied data. Out of this data set, a set of vectors can be formed. This set of
vectors is centred at the mean of all the points in the data set. The first vector is a unit
vector that indicates the direction for which the variance is maximized. The second
vector indicates the direction of second most variance, and is a unit vector orthogo-
nal to the first vector and so on. These vectors are the eigenvectors of the covariance
matrix V of the data set and are termed Empirical Orthogonal Functions (EOFs). The
EOFs form the orthonormal system, {e1, e2, . . . , ep}. This theory is fully explained
in Preisendorfer(1988).

Each data set in a p-dimensional space, denoted by a vector z(t) = (z1(t), . . . , zp(t))
can be described by its projection onto the EOFs ei:

z(t) =
p∑
i=1

ai(t)ei, (3.4)

where the amplitudes (or principal components) ai(t) are given by ai(t) = [z(t), ei]
with [, ] the Euclidian innerproduct. When projecting a streamfunction onto the EOFs,
the time mean needs to be subtracted from the streamfunction, since the EOFs are
centred at the time mean, resulting in z(t) = ψ(t) − ψ(t). The ai are the coordinates
of the points in the EOF space. The total variance of the dataset is equal to the sum of
the eigenvalues of the matrix spanned by the EOFs:

V ar(ψ) =
p∑
i=1

zi(t)2 =
p∑
i=1

[
p∑
j=1

aj(t)eji]2 =
p∑
i=1

ai(t)2 =
p∑
i=1

λi, (3.5)

where use has been made of the fact that the EOF amplitudes are uncorrelated in time,
aiaj = 0 for i �= j.

The eigenvalues corresponding to the EOFs fall off very quickly, see Figure 3.1
a). Given are the eigenvalues of the first 100 EOFs of the T21QG model calculated
from 100000 daily fields of 500 hPa streamfunction over the northern hemisphere. It
is observed that most information about the variability is contained in the first leading
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EOFs. Figure 3.1 b) shows us the cumulative variance. We can see that the first 10
EOFs contain 55% of the information about the variability. By projecting the data
along these dominant EOFs (truncate summation (3.4) at a certain n < p) , we can
reduce the dimension of the full EOF space considerably and still retain a good global
view of the dynamical range of the system. A special property of the EOFs is that for a
given truncation n, no other basis set can explain more of the average variance (Lorenz,
1956, North et al., 1982).

a b

Figure 3.1: a) Eigenvalues of the covariance matrix V for the first 100 EOFs of the
T21QG model, b) Cumulative variance, see (3.5).

3.2.3 Parameter sensitivity analysis with the T21QG atmospheric
model

The leading EOFs are an indication for the presence of preferred flow regimes. In the
T21QG model EOF1 is strongly related to the North Atlantic Oscillation (NAO) and
EOF2 may represent the Pacific North American pattern (PNA). The NAO is important
for the regional climate in Western Europe. A stronger NAO results in fewer easterlies
and more westerlies which cause milder winters in Western Europe (Hurrell, 1995).
We will examine the effect of forcing parameter perturbations on the preferred flow
regimes. An important question is formulated as follows: do parameter changes have
influence on the NAO and therefore on the climate in Western Europe? Analysis of the
EOFs can give us information on the statistics of the changed climate. In Figure 3.2
EOF1 - EOF4 of the T21QG model are shown.

In the Lorenz 63 model the degree of asymmetry of the model was used as a para-
meter to measure the change in the behaviour of the attractor (Moolenaar and Selten,
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2004). At each time step, the state of the attractor was projected onto the vector con-
necting the two equilibria. This vector corresponds to EOF1 of the Lorenz 63 model.
The two equilibria indicate regimes. They were visited at irregular time intervals. Such
dynamics has the meteorological interpretation of regime behaviour. From these pro-
jection values a PDF for the coefficients was calculated over a large time interval.
Since there are only two regimes in the Lorenz 63 model, the PDF is a bimodal func-
tion, where both modes occur with equal probability for unperturbed parameters. When
perturbing the parameters, one mode can grow at the expense of the other mode, indi-
cating asymmetry in the model and in the PDF. In the T21QG model regime behaviour
is found that can be related to the real atmosphere as mentioned above. The PDFs of
the first ai’s will reflect these preferences. In order to study the sensitivity to changes
in the forcing parameters Sk of (3.1) we have to identify a measure for the change in
the behaviour of the T21QG model. We will use the amplitudes ai of the projections
of the streamfunction onto the EOFs. Only the level 500 hPa will be analysed. For
a long term integration for each day a1, the amplitude of the projection onto EOF1 at
level 500 hPa, is calculated and then binned, thus creating the PDF1 of a1. Each PDFi
is divided into 100 bins, each bin has the length 0.002 and

∑nbin
j=1 PDFi(j) = 1. It

describes the intensity of the anomaly in the direction of EOF1. The same is done for
a2 to a6. In Figure 3.3 the PDFs of a1 to a6 for an unperturbed climate integration of
100000 days are shown.

The time mean of these PDFs is equal to 0:

[(ψ(t) − ψ(t)), ei] = ai(t) ⇒
[(ψ(t) − ψ(t)), ei] = ai(t) ⇒
[(ψ(t) − ψ(t)), ei] = ai(t) ⇒

[0, ei] = ai(t) ⇒
ai(t) = 0,

where [, ] is the Euclidian inproduct:

[x, y] =
∑

xiyi, (3.6)

and the overbar indicates the time mean. Such PDFs can also be made for a climate
integration with perturbed forcing parameters. Systematic changes in time of the EOF
amplitudes indicate climatic change (North et al. 1982, Selten, 1997). It produces a
shift in the PDF.

We introduce parameters βi, (i = 1, 2, 3, 4, 5, 6) to indicate the measure of change
in the simulated climate:

βi =
nbin∑
j=1

(PDFi(j) − ˜PDFi(j))2, (3.7)

where PDFi(j) is the probability density of ai in bin j for the perturbed integration

and ˜PDFi(j) is the probability density of ai in bin j for the integration with stan-
dard parameters. Changes in the PDFs of the ai’s indicate changes in the strength of
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the preferred patterns of the streamfunction. These changes are influential for the re-
gional climate. It is of interest to find the largest changes possible. This is indicated
by those PDFs, made with perturbed parameters, that differ the most from the standard
PDFs. The parameters βi will indicate the measure of change of these PDFs. Larger
βi’s mean larger change in the climate. These βi’s are one way of measuring climatic
change. Different changes may result in a same βi value. A PDF can just shift in it’s
horizontal range, or change shape; become wider or smaller or change in skewness.
Not all climate changes are reflected in these βi’s, because different types of time se-
ries may have identical PDFs.

a

c

b

d

Figure 3.2: EOF 1 (a), EOF 2 (b), EOF3 (c) and EOF 4 (d) of the T21QG model, of
500 hPa streamfunction (normalized units).
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Figure 3.3: PDF’s of the amplitudes a1 (solid), a2 (long dash), a3 (short dash), a4

(long short dash), a5, (dots) and a6 (dot dash). It is noted that for all PDFs the time
mean equals zero, see (3.6).

3.3 Searching effective forcing parameter perturbations
using the adjoint equations

The T21QG model is written in terms of the potential vorticity qk at each of the three
levels k (equation (3.1). The forcing terms Sk are determined (following Roads, 1987)
by computing the potential vorticity tendencies, using a large number of observed at-
mospheric fields and by averaging these tendencies. These average tendencies should
be equal to zero; the forcing term S is chosen such that it compensates the deviation
from zero. This is equivalent to assuming that the sample of fields used in such a com-
putation represents a statistically stable climatology. Averaging the potential vorticity
tendencies gives:

dqk
dt

= −J(ψk, qk) −Dk(ψk) + Sk (3.8)

d

dt
(qk) = −J(ψk + ψ′

k, qk + q′k) −Dk(ψk + ψ′
k) + Sk (3.9)

= −J(ψk, qk) − J(ψk, q′k) − J(ψ′
k, qk) − J(ψ′

k, q
′
k) −Dk(ψk) + Sk

0 = q̇k = −J(ψk, qk) −Dk(ψk) − J(ψ′
k, q

′
k) + Sk, (3.10)

where overbar denotes averaged values and apostrophe denotes the deviation from the
averaged value. For the forcing Sk we now have that this equals the opposite of the
averaged tendencies, so:

Sk = J(ψk, qk) +Dk(ψk) + J(ψ′
k, q

′
k). (3.11)

For these computations daily analysed streamfunction fields from the winter season
are used obtained from the European Centre for Medium range Weather Forecasts
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(ECMWF).
Two important questions are raised: do small changes in the forcing parameters

affect the simulated climate and is there an efficient way of finding the most effective
forcing parameter perturbations? As in a previous study (Moolenaar and Selten, 2004),
we want to compare random perturbations with perturbations chosen with the use of
the first singular vector, as mentioned in the introduction. One difference is that instead
of taking all model parameters into account, we now only allow an uncertainty in the
forcing parameters. We wil use the algorithm to calculate forcing singular vectors as
devised by Barkmeijer et al, (2003). They compared forcing singular vectors with
initial condition singular vectors in 2-day forecasts.

3.3.1 The tangent linear and the adjoint equations
To calculate the forcing singular vectors, the tangent linear and the corresponding ad-
joint model need to be extended with the equations with respect to the forcing param-
eters, which are elements of the parameter vector S.

As mentioned in Section 3.2.1 it is assumed that the multi-level field of PV is a
linear function of the multi-level streamfunction, which is invertible under appropriate
boundary conditions. A time derivative of the streamfunction can be derived by ap-
plying the linear operator on both sides of equation (3.1). We obtain a system of the
form

ψ̇ = F1(ψ, S), (3.12)

whereby S is the forcing in terms of streamfunction. This streamfunction vector ψ is
next extended with the vector S in the forcing parameter space, resulting in vector y:

y =
(
ψ
S

)
. (3.13)

The tendency equations then become:

ẏ =
(
ψ̇

Ṡ

)
=
(

F1(ψ, S)
F2(S)

)
=
(

F1(ψ, S)
0

)
= F(y). (3.14)

The tangent linear equations are derived by linearizing the tendency equations (3.14)
around a non-linear reference orbit yr:

ẏ = F(y) ⇒ ˙(yr + δyr) = F(yr + δyr) ≈ F(yr) + Jbδyr + O(|δyr|2)
⇒ ẏr + ˙δyr ≈ F(yr) + Jbδyr

⇒ ˙δyr ≈ Jbδyr,
(3.15)

where Jb is the Jacobi matrix:

Jb =
∂F(y)
∂y

|yr =

(
∂F1(ψ,S)

∂ψ
∂F1(ψ,S)

∂S
∂F2(S)
∂ψ

∂F2(S)
∂S

)
|yr =

(
∂F1(r,S)

∂r
∂F1(r,S)

∂S
0 0

)
|yr

=
(
Ja I
O O

)
|yr , (3.16)
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where I is the identity matrix since the parameter vector only contains the forcing
terms, O is the zero matrix and Ja is the Jacobian matrix that is obtained by linearizing
equation (3.12) along a reference solution when only the streamfunction is a variable,
rather than both the streamfunction and the forcing parameters.

The tangent linear equations integrate a small perturbation (δyr(0)) forward in time
over a sufficiently short period. This can be formulated with the propagation matrix R:

δyr(T ) = R(0, T ) · δyr(0). (3.17)

The perturbation is set fixed at initial time, < δyr(0), δyr(0) >= 1, where <,> is the
Kinetic Energy inner product, applied at each level seperately and added together

< x, y >=
∫ ∫

∇x∇ydΣ, (3.18)

which is related to the Euclidian inner product by

< δyr(0), δyr(0) >= [Tyr(0),yr(0)], (3.19)

with T a diagonal matrix. Since only perturbations in the forcing parameters are con-
sidered and not perturbations in the initial conditions, this can be rewritten as:

δyr(0) =
(
δψ(0)
δS(0)

)
=
(

0
δS(0)

)
⇒ < δS(0), δS(0) >= 1. (3.20)

This can be formally written with the use of a projection matrix P2, which projects
vector y onto (forcing) parameter space:

P2y = P2

(
ψ
S

)
=
(

0
S

)
. (3.21)

The solution of the tangent linear equations at end time (T ) yields the approximate
deviation from the reference orbit, δyr(T ). Because δS remains constant in time, we
have:

δyr(T ) =
(
δψ(T )
δS(T )

)
=
(
δψ(T )
δS(0)

)
, (3.22)

and we only have to look at the evolution of δψ. This can be formally written with the
use of a projection matrix P1, which projects vector y onto state space:

P1y = P1

(
ψ
S

)
=
(
ψ
0

)
. (3.23)

Combining these matrices, a forward integration of the tangent linear equations can be
rewritten as:(

δψ(T )
0

)
= P1δyr(T ) = P1Rδyr(0) = P1RP2

(
0

δS(0)

)
≡M

(
0

δS(0)

)
.

(3.24)
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In summary, using the tangent linear equations, a unit hypersphere in parameter space,
centred at the initial state of the reference orbit, evolves into the deviation of the refer-
ence orbit in state space. In Figure 3.4 a schematic picture is drawn of this error growth.
The sphere on the left represents the unit hypersphere in parameter space at initial time
(t = 0), centred at the standard parameter values. The hypersphere evolves into the el-
lipsoid at the right, which lies in the state space. The dashed line is the reference orbit,
calculated with non-linear equations, that starts at the centre of the hypersphere and
evolves to the centre of the ellipsoid at end time (t = T ). The first major axis of the el-
lipsoid shows the largest deviation from the reference orbit and equals the first singular
vector. The solid line represents an orbit calculated with the tangent linear equations.
It starts at the first right singular vector and evolves into the first left singular vector.
So this first right singular vector in parameter space is the parameter perturbation that
will yield the largest error growth in state space.

P2δy(0) =
(

0
δS(0)

)

P1δy(T ) =
(
δψ(T )

0

)

Figure 3.4: Schematic picture of the evolution of the first right singular vector (in
parameter space) into the first left singular vector (in state space).

We want to find the parameter perturbation δS that causes the largest error growth
at end time. This is the vector δS that maximizes the ratio

[δψ(T ), T δψ(T )]1/2

[δS(0), T δS(0)]1/2
=

[MδS(0), TMδS(0)]1/2

[δS(0), T δS(0)]1/2
=

[M∗TMδS(0), δS(0)]1/2

[δS(0), T δS(0)]1/2
,

(3.25)
where matrix T is here to denote the kinetic energy innerproduct, M∗ is the adjoint of
M and is found as a solution of the following generalized eigenvalue problem

M∗TMδS = λTδS. (3.26)

with largest eigenvalue λ and is called the first singular vector. Using v = T 1/2δS this
can be rewritten into the following symmetric eigenvalue problem:

T−1/2M∗TMT−1/2v = λv (3.27)
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which is solved using the Lanczos algorithm (Parlett, 1980). The operators M and M∗

are not explicitly known but are evaluated using forward and backward integrations
with the tangent linear and adjoint equations as described by Barkmeijer et al. (2003),
(equations 13-16).

3.3.2 The perturbed model
To denote the uncertainty in the forcing in streamfunction S we add the forcing term f
and obtain

Sk + fk, k = 1, 2, 3 (3.28)

as a new forcing at each level k. Using f without subscript to denote the forcing
perturbation at all three levels simulationeously f = δS; it is the perturbation of S and
the length of f will be 5% of the length of S.

When using first singular vectors as the forcing perturbation f , the vector will be
scaled as follows:

< f, f >1/2= 0.05 < S, S >1/2 . (3.29)

To be more precise:

fk = 0.05
< S, S >1/2

< f̃, f̃ >1/2
f̃k, (3.30)

where f̃ is the singular vector (before scaling). The scaling is the same on each of
the three levels, preserving the structure of the singular vector. However, when using
random perturbations, f will be scaled on each level k seperately:

< fk, fk >
1/2= 0.05 < Sk, Sk >

1/2, k = 1, 2, 3. (3.31)

This can be interpreted as using certain weights in the norm. Moreover, equation (3.29)
still holds. With these weights, we assume the same level of uncertainty in the forcing
at each level.

The search for the perturbation vector f that results in the largest climate change is
carried out in the same way as in Moolenaar and Selten (2004) for the Lorenz 63 model:
with the use of an adjoint method forcing parameter perturbations that are likely to be
effective are selected. The scheme is as follows:

• calculate a short reference orbit

• calculate, with the use of the tangent linear and adjoint equations the correspond-
ing first singular vector, along with the first singular value

• shift the reference orbit a timestep (one day) forward, calculating the correspond-
ing first singular vector and the first singular value again

• look at the evolution of the singular value and select the singular values that
occur after the trajectory has gone through a sensitive area, that is after the first
singular value has grown to a large value and use the corresponding first singular
vector as forcing parameter perturbation
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The short term integrations that we use to calculate the first singular vector and
the corresponding first singular value, are 5 days long. This is long enough for the
perturbation to grow sufficiently, and short enough for the linearity to be sufficiently
accurate. When a reference orbit and its corresponding first singular vector and value
are calculated, the next reference orbit is calculated starting at the second day of the
previous orbit, so the integration interval is shifted one day forward.

When the singular vectors have been calculated, these can be added as a forcing
onto the climatological forcing S. Both the climatological forcing and the added forc-
ing are scaled with the kinetic energy norm, this norm is constructed by adding the
norms of each of the three levels.

3.3.3 Simulation results

The first singular value fluctuates considerably, as can be seen in Figure 3.5. Peaks
mark the passage of a time interval in which the system is sensitive to parameter per-
turbations. For a peak, we require that the first singular value exceeds the value of
500000. In Moolenaar and Selten (2004) we found that the singular vector that has just
passed through a sensitive area, is likely to be an effective parameter perturbation. So,
we want to draw the singular value at the moment it has a first local minimal value after
the peak.

Figure 3.5: Evolution of the first singular value for 5 day long reference runs.

100000 day long integrations are made with 1000 specifically chosen first singular
vectors as perturbations on the forcing parameters (as described in a previous section).
For each of these perturbed integrations the PDFs of a1 to a6 (PDF1 to PDF6) are cal-
culated along with β1 to β6. A PDF of this β1 is then calculated. Since the simulations
with the largest βtotal = β1 + β2 + β3 + β4 + β5 + β6, were also the ones with the
largest β1, we only take a look at the PDF of β1. Apparently the shift in the projection
onto EOF1 is usually the largest one. In Figure 3.6 the PDF of β1 is shown (solid
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line). It falls very rapidly, but there is a long tail consisting of 25 integrations with
β1 > 0.02. So searching effective forcing parameter perturbations with the adjoint
method does lead to success, admitted that this is only the case for part of the selected
singular vectors. The largest value found for β1 is 0.05. PDF1 to PDF6 of a1 to a6 resp.
(the amplitudes of the projections on the EOF1 to EOF6 resp.) of the simulation made
with the singular vector as parameter perturbation that gave the largest β1 are shown
in Figure 3.7. Unfortunately, when comparing plots of different singular vectors, the
25 singular vectors that resulted in a β1 > 0.02, they did not show any specifics in
common that could distinguish them from the other, less effective, singular vectors.

a b

Figure 3.6: PDF of β1 for the adjoint method (solid line) and the random method
(dashed line). a) total PDF b) zoom in of PDF. The random method is explained in
Section 3.4.1.

3.4 Comparison with other search methods
Other methods, such as simulated annealing (Kirkpatrick at al, 1983), fail to give an
answer within a reasonable computing time due to the long integration time of one
run in combination with the large number or parameters that are varied. In order to
find the optimal solution, a perturbed run needs to be made for each parameter. When
the number of parameters exceeds the number of runs that are feasible, this method
becomes too computationally expensive.

In order to see if the adjoint method draws effective forcing parameter perturba-
tions, we need to compare our chosen parameters with the best of randomly chosen
perturbed forcing parameters. We want to do this as ’random’ as possible and also with
as less information about the pattern of the forcing vector as possible. Furthermore,
we will select in the evolution, the singular value at the peak itself instead of the value
at the bottom after the peak, see Section 5.3.3. We will find out whether this yields
comparable results. Finally, we add forcing perturbations in the direction of EOF1 to
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Figure 3.7: Standard (solid line) and perturbed (dashed line) PDF1-PDF6. β1 =
5.0 · 10−2, β2 = 8.9 · 10−3, β3 = 1.7 · 10−2, β4 = 4.2 · 10−3, β5 = 4.3 · 10−3 and
β6 = 4.6 · 10−3. This perturbation gave the largest shift in PDF1 (and therefore the
largest β1).
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evaluate if this causes an increase in the strength of the circulation pattern correspond-
ing to EOF1.

3.4.1 Random selection of perturbations
For each level, we draw a random vector from a uniform hypersphere in parameter
space, which will then be scaled to 5% of the climatological forcing, as described in
Section 3.3.2. The scaling will be weighed, by requiring that fk is 5% of Sk at each
level. In this way we assume equal uncertainty in streamfunction forcing S at each
level.

Again 100000 day long integrations are made, but this time with randomly chosen
parameter perturbations. The PDF of β1 for these integrations is shown in Figure 3.6
(dashed line). The largest β1 found with this random method, equals 0.0025. This is
20 times smaller than the largest β1 found with the adjoint method. From the vector
perturbations found with the adjoint method, 35.7% yielded a larger β1 than this largest
β1 found with a random parameter vector perturbation. PDF1 to PDF6 of a1 to a6 resp.
of the simulation made with the random vector as parameter perturbation that gave the
largest β1 are shown in Figure 3.8.

3.4.2 Alternative selection of singular vectors as perturbations
From the experiments carried out with the Lorenz 63 model (Moolenaar and Selten,
2004), it was concluded that the first singular vectors that correspond to a first singular
value that occurs just after a high peak, are likely to be effective parameter perturba-
tions, and are more likely to be effective than the first singular vectors corresponding
to the first singular values in the high peaks. To verify this in the T21QG model, 1000
long integrations were made with the first singular vectors with singular values in the
peaks (values larger than 500000). Again, the PDF of β1 was calculated and can be
seen in Figure 3.9. This PDF (dotted line) is quite similar to the previous one made
with the adjoint method (solid line). However, the largest value for β1 found here is
some degree smaller, namely 0.037. In this experiment only 8 β1’s larger than 0.02
are found as opposed to 25 in the previous case. So this tells us that singular vectors
corresponding to singular values in a high peak are slightly less likely to be effective
than singular vectors corresponding to singular values just after a high peak.

3.4.3 Perturbation in the direction of EOF1
As a last experiment, we add a forcing perturbation in the direction of EOF1. This
will have an effect on EOF1, but is this the forcing perturbation with the most effect
on EOF1? To answer this question, a 100000 day integration was made with EOF1 as
forcing parameter perturbation. It was scaled on each level individually with 5% of the
climatological forcing. This gave us β1 = 0.018, which is not the largest β1 we found
by far. When scaling the perturbation with 10%, β1 had the value of 0.05, which equals
the largest β1 found with the specific first singular vectors as forcing parameter
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Figure 3.8: Standard (solid line) and perturbed (dashed line) PDF1-PDF6. β1 =
2.5 · 10−3, β2 = 4.4 · 10−4, β3 = 1.1 · 10−3, β4 = 7.1 · 10−5, β5 = 1.1 · 10−4 and
β6 = 6.8 · 10−5. This perturbation gave the largest shift in PDF1 with the random
draws.
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perturbation, but then with 5% scaling. So we can conclude that a forcing in the di-
rection of EOF1 will not result in the largest change in EOF1. Our method is capable
of finding a forcing perturbation that is more effective. In Figure 3.10 PDF1 to PDF6
of a1 to a6 of the simulation made with EOF1 as forcing parameter perturbation are
shown. The solid lines are the standard (unperturbed) PDFs, the dashed lines are the
PDFs perturbed with EOF1 scaled with 5%, and the dotted lines are the PDFs perturbed
with EOF1 scaled with 10%. Note the change in skewness which was also apparent for
the most effective parameter perturbation (Figure 3.7).

a b

Figure 3.9: PDF of β1 for the sv1 after a peak (solid line), the random perturbations
(dashed line) and for the sv1 in a peak (dotted line) a. a) total PDF b) zoom in of PDF.

3.5 Conclusions

This study is a continuation of Moolenaar and Selten (2004), where a method for find-
ing effective parameter perturbations in atmospheric models was tested in the simple
Lorenz 63 model. The goal of this method is to find those perturbations that cause the
largest change in the climate statistics. Therefore, such a model has to be integrated
over a large time interval. Optimization methods, that require an extremely long com-
puter time to evaluate the effect of a new set of parameter values, cannot produce the
solution that results in the maximum climate change within a reasonable computing
time. In the above study, a method was presented that uses short time integrations of
the adjoint equations and selects perturbations that have a good chance to be effective
in changing the climate. To judge the result a comparison with a random selection
method was made.
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In this study we applied, as a next step, the same method to a more realistic atmo-
spheric model, the T21QG model. The parameter vector that is perturbed by a small
vector of given size, consists of the forcing parameters and has a dimension 1449. It
is clear that we may not expect that a random method produces acceptable results in
such a case. The parameter space is large and the combinations of perturbing these
parameters are numerous.

Using the adjoint equations 1000 singular vectors were selected from a large num-
ber of consecutive short runs and it was checked if a parameter perturbation, having the
same direction, turned out to be effective in changing the climate. The selection was
based on the first singular value. At the moment it had dropped after a high peak, the
first singular vector was selected. So we have chosen the points on the attractor where
the trajectory has just passed a phase where it is highly sensitive to perturbations.

The T21QG model shows regime behaviour. These regimes can be identified by
the first few EOFs. The change β1 in the distribution of the amplitude of the first
EOF over a large simulation run is used as a measure for the change of the climate.
The largest β1 found was 0.05 with the adjoint method and 0.0025 with a random
selection of 1000 parameter perturbations. From the vectors found with the adjoint
method 35.7% yielded a larger β1 than this largest β1 found with a random parameter
vector perturbation.

As mentioned before, finding the most effective solution is for the present model not
within reach even with a converging scheme at hand. We are dealing with a large vari-
able space (consisting of a large parameter space and a large state space). Therefore, a
large percentage of the parameter perturbations is expected to be ineffective. Although
we are not as successful as Moolenaar and Selten (2004), where for the Lorenz 63
model most selected parameter perturbations were effective, we still found that 2.5%
of the parameter perturbations here, selected with the adjoint method, gave a value
above β1 = 0.02, while for the random method none of the 1000 runs came above this
value, see Figure 3.6. We can also phrase the result differently: the random method
comes in 97% of the cases with an ineffective perturbation (β1 < 0.001), while for the
adjoint method the percentage is 43%.

It is important to verify how much change small parameter perturbations can cause
in the simulated climate. To get an insight in how much effect such perturbations can
have, it is important to identify the parameter perturbations that yield the largest cli-
mate change. We have shown that, although still hampered by the large size of the
parameter space and the ensemble set, the adjoint method reveals a much larger pos-
sible magnitude of climate change, than a random method is capable of. We selected
1000 parameter perturbations with each method. With the adjoint method many pa-
rameter perturbation vectors were found that yield far more change in the simulated
climate than the most effective randomly chosen vector.
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Figure 3.10: Standard PDF1-PDF6 (solid line) and perturbed with EOF1, scaled with
5% (dashed line) and with 10% (dotted line) PDF1-PDF6. For 5% scaling: β1 =
1.8 · 10−2, β2 = 1.1 · 10−3, β3 = 1.2 · 10−2, β4 = 9.2 · 10−4, β5 = 3.5 · 10−4 and
β6 = 1.6 · 10−4. For 10% scaling: β1 = 5.0 · 10−2, β2 = 5.5 · 10−3, β3 = 3.2 · 10−2,
β4 = 6.3 · 10−3, β5 = 1.4 · 10−3 and β6 = 3.9 · 10−3.
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Appendix A: Spherical harmonics
The spherical harmonic Ymn(λ, φ), −n ≤ m ≤ n, is a function of the two coordinates
λ, φ on the surface of a sphere. φ is taken as the polar (colatitudinal) coordinate with
φ ∈ [− 1

2π,
1
2π], and λ as the azimuthal (longitudinal) coordinate with λ ∈ [0, 2π). The

spherical harmonics are orthogonal for different m and n, and they are normalized so
that their integrated square over the sphere is unity:∫ 2π

0

dλ

∫ 1

−1

d(sinφ)Y ∗
m′n′(λ, φ)Ymn(λ, φ) = δn′nδm′m. (3.32)

Here ∗ denotes the complex conjugate and δmn is the Kronecker delta. Spherical har-
monics satisfy the spherical harmonic differential equation, which is given by the an-
gular part of Laplace’s equation in spherical coordinates. Mathematically, the spherical
harmonics are related to associated Legendre polynomials (Pmn ) by the equation

Ymn(λ, φ) =

√
2n+ 1

4π
(n−m)!
(n+m)!

Pmn (sinφ)eimλ. (3.33)

The spherical harmonics form a complete orthonormal basis, so an arbitrary real func-
tion f(λ, φ) can be expanded in terms of real or complex spherical harmonics.

Appendix B: Dissipative terms in the T21QG model
We describe here the dissipative terms in equations 3.3, closely following Marshall and
Molteni, (1993). The dissipative terms −D1,−D2,−D3 at the three pressure levels
200, 300 and 500 hPa respectively, take the form:

−D1 = TR12 −H1

−D2 = −TR12 + TR23 −H2 (3.34)
−D3 = −TR23 − EK3 −H3.

The effect of temperature relaxation between levels 1 and 2 is represented by the term:

TR12 = τ−1
R R−2

1 (ψ1 − ψ2), (3.35)

where τR is a radiative time scale of 25 days. The corresponding term for temperature
relaxation between levels 2 and 3 is given by:

TR23 = −τ−1
R R−2

2 (ψ2 − ψ3). (3.36)

Ekman dissipation is expressed as the vorticity tendency due to a linear drag on the
wind at 800 hPa:

EK3 = (a cosφ)−1(
∂

∂λ
[k(λ, φ, h)v3] − ∂

∂φ
[k(λ, φ, h)u3 cosφ]), (3.37)
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where λ is longitude, φ latitude, h the orographic height, a the average earth radius,
and

u3 = −a−1 ∂ψ3

∂φ
, v3 = (a cosφ)−1 ∂ψ3

∂λ
. (3.38)

The term k is the drag coefficient and is dependent on the land-sea mask and on the
orographic height:

k(λ, φ, h) = τ−1
E [1 + α1LS(λ, φ) + α2FH(h)], (3.39)

where τE= 3 days, α1 = α2 = 0.5, LS(λ, ψ) is the fraction of land within a grid box,
and

FH(h) = 1 − exp−h/(1000m). (3.40)

Finally,
Hi = cH∇8q′i, (3.41)

where q′i is the PV minus planetary vorticity and orographic component, and the coef-
ficient

cH = τ−1
H a8(21 · 22)−4 (3.42)

is such that spherical harmonics of total wavenumber 21 are damped with time scale
τH = 2 days.
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CHAPTER 4

Mathematical conservation ecology:
supporting a herbivore

metapopulation

A herbivore-predator metapopulation model is investigated. Different situations are
described in a model with two patches. The predator may be absent, and if it is present
only herbivores may migrate between the patches. For all variants we include the influ-
ence of the climate by letting either the instrinsic growth rates or the carrying capacities
depend on climatic fluctuations. These climatic fluctuations at both patches can be cho-
sen to be either correlated or uncorrelated. We investigate the risk of extinction for the
herbivores by varying the migration rates and the death rates of the predators. The risk
of extinction is measured in terms of the fifth percentiles of the subpopulations. This
is the value below which the subpopulation is found 5 out of 100 times in a series of
values taken at fixed time intervals. The different migration rates and the death rates
of the predators are varied. With a given cost per unit of changing a parameter and a
given fixed total effort, the optimal solution can be found. It is concluded that general
rules for conservation management are hard to formulate. Unwanted side effects may
occur; improvement for one species may result in a decrease of the population size of
some other species, even to the point of extinction. This shows that e.g. biodiversity
may be influenced in a way that is not easy to foresee.

4.1 Introduction
Modelling the dynamics of an ecological system starts with the definition of the state
variables and parameters and with the choice whether or not to include spatial structure.
In this study the simplest form of spatial distribution is considered: a metapopulation
model consisting of two patches. Within a patch no spatial variation is present and the
total biomass of a species within the patch is defined as a state variable. Our investiga-
tion differs from the mainstream of metapopulation studies (Hanski, 1999) in the sense

65
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that not the number of occupied patches acts as state variable (Levins, 1969); we con-
sider population sizes. In a patch occupancy model such as the Levins model a patch
is either occupied or empty and the local dynamics are not specified. When allowing a
detailed spatial structure and local population dynamics in a patch, the model becomes
considerably more complex. Individual based models do specify the local dynamics,
see e.g. DeAngelis and Gross, (1992). From each member of the population individ-
ually they simulate the behaviour, such as movements within their habitat, growth and
development, as well as reproduction and death. They distinguish themselves from less
detailed models in which characteristic quantities of the entire population are averaged
and their changes in time are computed. Individual based models are very complex,
highly sensitive to parameter perturbations and prone to error growth. Furthermore,
large simulations are needed to be able to analyse the systems (Levin, 1992, Pascual
and Levin, 1999). The local dynamics may affect the viability and extinction risk of a
subpopulation. For instance, the migration rate may depend on the local dynamics. It
can therefore be useful to consider local dynamics when using a metapopulation model
for conservation management of endangered species (Harding and McNamara, 2002,
Lopez and Pfister, 2001).

The model used in this study does not deal with a single species metapopulation as
most studies, see e.g. Etienne (2002) and Holt et al. (2005), but describes predator-
prey interaction (Kareiva, 1987; Taylor, 1990). Furthermore the influence of climate
fluctuations upon the subpopulations is taken into account. With other studies we have
in common that our assessment of survival of a local population based on a model
study is followed by possible management strategies to conserve species that have a
large risk to disappear in parts of their (fragmentized) habitat.

Understanding why a biological population may fluctuate is the main goal of many
ecological studies. By defining an ecological system with state variables in one of the
above ways and with parameters quantifying properties such as population growth and
species interaction we can go deeper into the question. A possible answer that deserves
to be examined right away is that a fluctuating input yields a fluctuating output. In
other words, time dependent parameters give rise to time dependent state variables,
e.g. chaos in means chaos out. In Hsieh et al. (2005) such ecological systems are
said to track the input (climate). In a simple herbivore-predator system consisting of
two state variables and with constant parameters, fluctuations may arise in the form
of a periodic solution. Like any pendulum its future states can be approximated as
good as one wishes provided that sufficient accurate information about the parameters
and the present state is available. Fluctuation can also be formulated differently. We
may think of deviations of the system evolution from a computed solution satisfying
the deterministic model and its initial conditions with an arbitrary high accuracy. In
more complex systems with constant parameters chaotic solutions may turn up. Then
the actual state variables will deviate from such a computed solution and will fluctuate
irregularly within some range. The numerical solution then still gives an idea of the
dynamics. It will be a concatenation of intervals where parts of the chaotic attractor are
followed for some unknown length of time in some unknown order. This is an example
of fluctuations due to the nonlinear structure of the system (Grasman and Van Straten,
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1994). If the model contains stochastic elements e.g. multiplicative noise, then we may
have a tracking type of fluctuation in which the distribution of possible states at a time
is more or less Gaussian with the state of the system without noise as mean. It can also
be that such a path is left and that the system may tend to the basin of attraction of a
different stationary state of the corresponding deterministic system. It may visit all or
some of these basins in an irregular way. Essential is that different stationary solutions
can exist. This also requires a system with a nonlinear structure.

Population fluctuations may not only be due to intrinsic processes and interactions,
but may as well arise from environmental influences. One important aspect is the in-
fluence of climate upon the dynamics of a population. Recently, more attention has
been given to the influence of large-scale climate variability upon ecological processes
than just taking the local weather into account (Sæther, 1997, Mysterud et al., 2001,
Stenseth et al., 2002). Of particular interest are the impacts of the North Atlantic Oscil-
lation (NAO), e.g. Mysterud et al., 2001, Thompson and Grosbois, (2002), Arnott and
Ruxton, (2002), Lusseau et al., (2004) and the El-Nino Southern Oscillation (ENSO),
e.g. Pounds et al., (1999), Urban et al., (2000). These climatic patterns affect both
terrestrial and marine vegetation and animal life. We mention some examples. Mys-
terud et al. (2001) compared wild red deer living at the west coast of Norway with
domestic sheep, which stay indoors during winter and have a steady supply of energy.
They found that the winter climate variability, for which the NAO is mainly respon-
sible, influences the food supply in summer and therefore influences the body weight
of the wild red deer. Lusseau et al. (2004) suggest that climate variations have an
effect upon prey availibility and therefore influence the population size of bottlenose
dolphins in the Moray Firth UK and that of killer whales in Johnstone Strait, Canada.
Pounds et al. (1999) state that the disapearence of toads and frogs in highland forests at
Monteverde, Costa Rica is caused by an increase in the average altitude of dry-season
mist. This increase is caused by atmospheric warming, which is related to changes in
sea surface temperature (ENSO). Also, long term changes in the environment, such as
climate change may affect ecological processes. To get a good idea of how large the
impact of climate change can may be, it is necessary to have a good understanding of
the way ecosystems are influenced by the climate with its natural variability.

Interaction between biologists and climate researchers is needed to gain more in-
sight in the response of ecosystems to climate variability and climate change (Stenseth
et al., 2002). Uncertainties in our understanding of underlying mechanisms in both
the climate system and in ecosystems, and the way they interact, limit the knowledge
of today. Stenseth et al. (2002) highlight five important aspects when analysing the
effects that climate variations can have on ecosystems. Firstly, delayed effects of cli-
mate are important in ecosystems. The year in which certain individuals are born may
be of influence on for instance their size, which might have an effect upon their life-
span. Secondly, climate can have a different influence on sexes and age-classes, e.g.
the development of a population is altered when a climatic process influences younger
age classes more than older ones. Thirdly, due to climate change extreme events could
become more frequent, which are often more relevant to ecosystems than fluctuations
in the mean climate. A severe winter with a longer frost period for instance can lead to



68 Mathematical conservation ecology: supporting a herbivore metapopulation

damage and death in plants and animals. Fourth, climate variability might directly or
indirectly affect a particular organism, although the underlying mechanisms and their
consequences may be complex. Fifth, it is important to recognize that climate and
ecosystems may interact in a nonlinear way. For instance, a warm winter might favour
a certain population and cause growth, but the next warm winter might not have that
same effect, because of density dependence.

In the current literature the option of having a theoretically formulated system with
chaotic dynamics of itself is widely studied (Cushing et al., 2003). The construction
of bifurcation diagrams plays an important role in this literature. They indicate the
type of solutions that occur as a function of the parameters. Examples of real world
chaotic processes are more scarce (Becks et al., 2005). Fluctuations due to random
noise making the nonlinear system visit the attraction basins of different stationary
solutions is a less studied topic. A related problem is that of extinction of a population.
Then by random fluctuations a population with even a positive growth coefficient may
still die out globally or locally (Grasman and HilleRisLambers, 1997).

To bring a population near extinction, deterministic as well as stochastic forces
may be responsible (Burgman et al., 1993). We will consider the first case: from e.g.
herbivore-predator interaction, cycles with a phase of a very low herbivore population
size may occur, bringing the population in a critical state. A catastrophic external force
then may wipe away the herbivore. This last event is not part of our model. Ginzburg
et al. (1982) and Gilpin (1990) make a similar distinction between almost extinction
and full extinction. We also allow climatic fluctuations leading to periods with low
herbivore population sizes, but these fluctuations are not that large that this population
may get extinct.

Estimating the survival probability of a species in its habitat is part of a popula-
tion viability analysis (PVA) and of conservation management. PVA is a collection
of methods in model studies, used to identify threads faced by species. It evaluates
the risk of extinction or decline of a biological population and its chance to recover
(Burgman et al., 1993, Akçakaya et al., 1999, Akçakaya, 2000a, 2000b, Akçakaya and
Sjögren-Gulve, 2000). Uncertainty in parameters (due to inaccurate and insufficient
data) hamper PVA and parameter ranges (lower and upper bounds) are used (Akçakaya
2000b, Akçakaya and Sjögren-Gulve, 2000). Parameter sensitivity analysis can also be
used in quantifying uncertainties. It could be helpful to make a choice when gaining
more data (through fieldwork). Then it is important to know a priori which parameters
are most sensitive and should therefore be given priority. When sensitivities within a
model are known, the model prediction has more value for policy makers in the field
of conservation management. It may come within reach to improve conditions of a
certain endangered population, for instance by enhancing migration. Sensitivity anal-
ysis on specified parameters is a way to find effective solutions to reduce the risk of
extinction.

We study a herbivore-predator metapopulation model for two patches between
which the two species may migrate. In our model we include the influence of climate
fluctuations upon the herbivore population. For the climate we take a simple model of
the atmospheric circulation, the Lorenz-84 equations (Lorenz, 1984). Any climate time
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series could have been taken as well. The aim of this study is to analyse how changes
in parameter values may affect the conditions for the herbivore population. We are
particularly interested in improving the conditions, making the probability of survival
higher for the herbivores.

Due to climate fluctuations or to the intrinsic cyclic dynamics of the herbivore-
predator system the two herbivore subpopulations may for some time, separately or
jointly, get at a low level. In such a period a herbivore subpopulation may get extinct
from a catastrophic event. As mentioned before such a sudden extinction event is not
part of our model. Instead of taking the minimum value of the herbivore as a measure
of a low subpopulation level we take the fifth percentile. It is the value below which
the subpopulation is found 5 out of 100 times in a series of values taken at fixed time
intervals. The risk of extinction is more or less the product of the probabilities that the
population is at a low level and that a catastrophe (e.g. an epidemic disease) takes place,
see Akçakaya (1992) for a more detailed discussion of such an event. Consequently,
the time interval, that the population is small, must have a certain width in order to give
a catastrophic event a chance. The fifth percentile is a better choice than the minimum
for that reason.

In the next section the predator-prey model we use is specified. In the following
sections, different variants of the model are investigated. We consider the situation that
at the two patches the predator is absent. The herbivore may move from one patch to
the other. The climate fluctuations at the two patches are assumed to be uncorrelated.
The type of coupling between the two herbivore populations is based on the carrying
capacities and the actual size of the subpopulations. The fifth percentile, as defined
before, is a measure for the risk of local extinction of the herbivore. It will be analysed
whether or not the strength of the coupling is playing a role. In Section 4.4 the predator
is present at both patches but cannot migrate between them. Measures to conserve the
herbivore are evaluated. More specifically the death rate of the predator and the strength
of coupling between the patches are varied. The situation that also the predator may
migrate between the patches is studied in Section 4.5. In Section 4.6 the results are
discussed and interpreted in terms of species conservation policies.

4.2 The herbivore-predator model
There are many studies on herbivore-predator models, we select the Rosenzweig- Mac-
Arthur model (1963):

dh

dt
= d(1 − h

K
)h− hp

h+ c
, (4.1)

dp

dt
=

hp

h+ c
− bp,

where h and p are, respectively, the amount of herbivore- and predator biomass. It
is a commonly used system (Sherratt et al. (1997), Rai and Anand (2004), Huang
and Diekmann (2001), Janssen (2001)). The parameters are the intrinsic growth rate
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d, the carrying capacity K of the herbivore, the death rate b of the predator and c,
the reciproke of the slope at the origin of the functional response. Both Huang and
Diekmann (2001) and Janssen (2001) used this model in a two-patch variant where only
predators were allowed to migrate. They gave both patches equal parameter values.

Assuming that we start with strictly positive values for p and h, we may arrive at
three types of limit solutions for t→ ∞:

(a) a stable boundary equilibrium (h, p) = (K, 0) meaning that the predator gets
extinct

(b) a stable internal equilibrium (h, p) = (bc/(1 − b), cd(1 − b− bc/K)/(b− 1)2)

(c) a stable limit cycle.

Taking the herbivore parameters d and K as varying parameters and fixating the preda-
tor related parameters at

c = 0.01 and b = 0.8, (4.2)

we may find the above limit solutions. For a bifurcation diagram, system (4.1) is lin-
earized around the equilibria. The eigenvalues of the Jacobian are expressed in d and
K. Two important bifurcations only depend on the value of K; the transition of the
boundary equilibrium to the internal equilibrium is atK = 0.4 and the transition of the
internal equilibrium to a stable limit cycle is at K = 0.9. The bifurcation diagram is
depicted in Figure 4.1.

Figure 4.1: Bifurcation diagram: types of stable limit solutions as a function of K.

For a metapopulation model with two patches different configurations are possible.
The herbivore parameters may be identical or different at the two patches. The predator
may be absent at both patches or at one of them, and it may or may not migrate between
them. The climate fluctuations may be identical at both patches or fluctuate at their own
or be correlated in some way.
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4.3 A herbivore metapopulation exposed to climatologic
fluctuations

The influence of climate fluctuations upon the herbivore population is modelled by
making the instrinsic growth rate d and/or the carrying capacity K time dependent.
Furthermore, we consider the situation that the herbivores form a metapopulation living
at two connected patches between which they can migrate. In the absence of predators
the amount of biomass of the populations at the two patches satisfy

dh1

dt
= d1(t)(1 − h1

K1(t)
)h1(t) + w(

h2

K2(t)
− h1

K1(t)
), (4.3)

dh2

dt
= d2(t)(1 − h2

K2(t)
)h2(t) − w(

h2

K2(t)
− h1

K1(t)
).

Choosing this type of coupling between the two subpopulations we see that for constant
carrying capacities Ki, the stable stationary solutions h1(t) = K1 and h2(t) = K2

hold for all w ≥ 0 assuming positive intrinsic growth rates di(t). There is a nett flow
from patch 2 to patch 1 if h2/K2 > 1 and h2/K2 > h1/K1, which is quite natural. If
h2/K2 < 1, there is no strong reason to leave patch 2. However, if h2/K2 > h1/K1,
perspectives in patch 1 might be better. So if this information is available, which is pos-
sible because an equal exchange is not ruled out, a nett flow to patch 1 is still feasable.
The same argument holds for a flow in the opposite direction. In conclusion the above
coupling mechanism suits well for modelling a migration process. Nevertheless it is
certainly worth to consider other dispersion mechanisms due to specific forms of be-
haviour (Reed et al., 2005).

We study the external influence upon the carrying capacitiesKi given by a function
of time q(t) that mimics the fluctuations of the weather over a large time interval.
We will use the Lorenz 84 equations for that purpose. In the study of a real world
metapopulation an existing time series could have been taken as well. The Lorenz 84
system is a strongly truncated spectral model of the atmospheric circulation, being a
system of three coupled nonlinear differential equations (Lorenz, 1984):

dx

dt
= e(−y2 − z2 − αx+ αF ),

dy

dt
= e(xy − βxz − y +G), (4.4)

dz

dt
= e(βxy + xz − z).

The component x represents the strength of the zonal flow (westerly-wind current) and
the components y and z respectively the amplitudes of the cosine and sine phases of a
chain of large superposed waves. The parameter F is a forcing from the north-south
temperature gradient and G a forcing from the continent-ocean temperature contrast.
In the original form e = 1. By our choice of e the time scale of the climate model is
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such that the effect of the fluctuations upon the ecological system is large. The system
exhibits chaotic dynamics for a large set of values in the parameter space. We choose

α = 0.25, β = 4, e = 0.025, F = 8 and G = 1. (4.5)

The way of coupling this atmospheric model to the system (4.3) is as follows:

K1(t) =
1/2
q1(t)

, K2(t) =
1

q2(t)
, qi(t) = z(t;x(i)

0 , y
(i)
0 , z

(i)
0 ) + γ, (4.6)

where γ = 2.5, so z + γ > 0 always holds (z ranges between -2.0 and 2.1). The
state (x(i)

0 , y
(i)
0 , z

(i)
0 ) denotes the starting point on the chaotic attractor of the Lorenz-

84 system taken for patch i. Our choice of the function qi(t) is quite arbitrary. We
made it such that the fluctuations stay within certain bounds so that the effect in the
population sizes becomes notable but does not lead to explosive fluctuations in the
population sizes. Figure 4.2 shows the evolution of the carrying capacities K1 and
K2 which depend on the climatic fluctuations according to (4.6). For patches close
together the same starting value may be taken, while for patches at a larger distance
from each other different starting values would be more appropriate. If we want to
keep a correlation between the q1(t) and q2(t), see Gilpin (1990), we have to take for
the second patch the same solution as for the first with just the value of z shifted in
time, so

q2(t) = q1(t+ Δ), (4.7)

where Δ is a chosen small time difference. For uncorrelated time series, different initial
conditions should be chosen,

(x(1)
0 , y

(1)
0 , z

(1)
0 ) �= (x(2)

0 , y
(2)
0 , z

(2)
0 ). (4.8)

Due to the chaotic behaviour (sensitivite dependence on initial conditions) two solu-
tions with even the slightest difference in starting value will get completely uncorre-
lated after some time. Here, we choose unrelated time series of q1 and q2, meaning the
two patches are in different time regimes of the external source of fluctuation. To obtain
two different time series, we made two runs of the Lorenz 84 model (4.4) with different
starting points, so that (4.8) holds. We keep the intrinsic growth rates constant. These
parameters and the migration rate are set at

d1 = 1, d2 = 3 and w = 0.5. (4.9)

In Figure 4.3 the fluctuations of the herbivore subpopulations are depicted, for a
time interval of 1000 time units. We are interested in the effect of the degree of coupling
w between the two subpopulations upon the size of these populations in times that
the external influence makes it hard for them (population size at a level much lower
than the all time average). From a long run of 5000 time units, where each time unit
consists of 100 integration steps, time series {h1(tj)} and {h2(tj)} are produced. We
compute the histograms of the values that h1 and h2 take in these series to quantify the
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Figure 4.2: The evolution of carrying capacities K1 and K2 given by (4.6) as they
depend upon the climatic fluctuations.

Figure 4.3: The size of the two herbivore subpopulations as a function of time, (black
h1, grey h2) for the system given by (4.3)-(4.4) and (4.9).

distribution in time of the herbivore populations, see Figure 4.4. From the two series
{h1(tj)} and {h2(tj)} the fifth percentile ri is computed. It means that 5% of the
values of {hi(tj)} lies below ri. The lower ri the more the population at patch i is
at risk. As a measure for the risk of a local extinction we use the above defined fifth
percentiles ri. Thus, the size of the subpopulation is the only factor that is taken in
consideration. Of course properties important for survival, such as the recovery speed
of the herbivore subpopulation, depend on the local parameters di and Ki. However,
these are already to a certain degree taken up in the indicator because a high recovery
speed would lead to shorter time intervals of low subpopulation values resulting in a
higher fifth percentile value. In Tabel 4.1 the fifth percentile of the two populations are
given, as well as the minimum, mean and maximum.

When varying the migration rate w it turns out that the degree of coupling does not
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a b

Figure 4.4: Histograms of the two subpopulations a) h1, b) h2, calculated with an
integration of 5000 time units long.

min fifth percentile mean max
h1 0.104 0.120 0.206 0.984
h2 0.216 0.238 0.406 2.000

Table 4.1: Minimum, fifth percentile, mean and maximum for h1 and h2 for an integra-
tion of 5000 time units long, with w = 0.5.

play any role: for all w ≥ 0 we find the same values, r1 = 0.120 and r2 = 0.238.
This does not mean that automatically the degree of coupling is not important for the
presence of species at a patch. If a catastrophe has completely wiped away the local
population, then the speed of recolonization is an important factor. It may depend
upon the strength of coupling w. We investigate this by making runs with for the
herbivore starting subpopulations h1(t0) = 0 and h2(t0) = K2(t0). The time needed
for the subpopulation at patch 1 to arrive at 50% of its actual carrying capacity K1(t)
is registered for different values of w, starting at 0.1 and for each new run increased
by 0.1. Clearly for w = 0 this value is infinitely large. In Figure 4.5 it seen how this
arrival time (in terms of time units) decreases as the coupling is increased. It is worth
to find out why the values r1 and r2 do not change with w. It is easily seen that the sum
h1(t) + h2(t) does not depend on w and that hi(t) will approximately follow Ki(t) so
that the nett migration rate will be small. However, from these facts one cannot infer
that ri does not depend on w. It is also possible that the fluctuations are present at the
third decimal or at higher ones.



4.4. Herbivore fluctuations in the presence of a predator 75

Figure 4.5: Arrival time at the level of 50% of the actual carrying capacity for the
subpopulation at patch 1 as a function of the strength of coupling w. At the inital time
we have h1(t0) = 0 and h2(t0) = K2(t0).

4.4 Herbivore fluctuations in the presence of a predator
We now consider the situation that a predator is present at both patches. It is assumed
that, contrary to the herbivore, it cannot migrate between the patches. Furthermore, the
external fluctuations remain present. Now they will act upon the intrinsic growth rates
and will be equal for both patches. The system then changes into

dh1

dt
= d1(t)(1 − h1

K1
)h1 − h1p1

h1 + c1
+ w(

h2

K2
− h1

K1
),

dp1

dt
=

h1p1

h1 + c1
− b1p1, (4.10)

dh2

dt
= d2(t)(1 − h2

K2
)h2 − h2p2

h2 + c2
− w(

h2

K2
− h1

K1
),

dp2

dt
=

h2p2

h2 + c2
− b2p2,

with
b1 = b2 = 0.8, c1 = c2 = 0.1, w = 0.5 (4.11)

and
d1(t) = q(t), d2(t) = 3q(t), K1 = 0.5, K2 = 1, (4.12)

with q(t) as in (4.6). In Figure 4.6 we see the dynamics of the herbivore and predator
populations. The evolution during the first 500 time units is shown. When looking at a
longer evolution of p1 (not shown), it shows a trend of gradual growth until a sudden
collapse after which it roughly repeats itself. Figure 4.7 shows the evolution of the
instrinsic growth rate d1 over the same time period. Remember that d2 = 3d1.
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a

b

Figure 4.6: The behaviour of the herbivore and predator populations in case of iden-
tical climatologic conditions at both patches. Part of the stationary solution of (4.10)
is depicted. a) h1 (black line) and h2 (grey line), b) p1 (black line) and p2 (grey line).
Note that the value of p1 is multiplied with a factor 100. The behaviour of p1 gives the
impression that the solution is still in its spin up. This is not the case: long periods
with an increasing trend are followed by a sudden collapse.

Making a 5000 time unit long run with the system (4.10) we compute the fifth
percentile ri of the herbivore data at both patches. The result shows that the population
at the second patch is the most vulnerable to extinction:

r1 = 0.294, r2 = 0.0780. (4.13)

In Table 4.2 minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 are
given. We also computed the histograms of the herbivores for this run, which are shown
in Figure 4.8.

Two ways to improve the situation are taken in consideration: the migration co-
efficient w can be increased as well as the predator’s death rate b2. Both lead to an
increase of r2. The element of a conservation management strategy is brought in by
assuming that the effort to increase the death rate with one unit costs cb and that for the
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Figure 4.7: The evolution of intrinsic growth rate d1 as it depends upon climatic fluc-
tuations. (d2 is three times d1).

min fifth percentile mean max
h1 0.0998 0.294 0.408 0.479
p1 0.0102 0.0146 0.0423 0.0810
h2 0.0233 0.0780 0.518 0.883
p2 0.269 0.979 2.36 4.57

Table 4.2: Minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 for an
integration of 5000 time units long, with unperturbed parameters.

migration coefficient this cost is cw. Moreover, a fixed amount of effort C is available
for improving the conditions for the herbivore metapopulation. Instead of one of the
two options we may consider a mixed approach. So with the constraint

cb(b2 − 0.8) + cw(w − 0.5) = C. (4.14)

we look for values b2 and w that produce the largest improvement of r2. In Figure 4.9
a) we see the results of r2 for the choice C = 0.05 , cb = 10 and cw = 0.1 . Now
(4.14) can be rewritten:

10(b2 − 0.8) + 0.1(w − 0.5) = 0.05 ⇒ b2 = 0.81 − 0.01w. (4.15)

So when increasing w by a stepsize 0.005, b2 decreases with stepsize 0.00005. An
optimum is found for

b2 = 0.80365 and w = 0.635 with r2 = 0.1066. (4.16)

It is noted that for this value of w, and larger values, the predator population at patch
1 gets extinct. This extinction coincides with a rapid decrease in the fifth percentile
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for the herbivore in patch 1. This change in r1 is more drastic than the change in r2,
as can be seen in Figure 4.9 b). Apparently an increasing migration corridor along
with an decreasing death rate for the predator in patch 2 result in a decline in the her-
bivore subpopulation in patch 1 which coincides with a rapid decrease in the predator
subpopulation in that patch, eventually leading to extinction.

a b

c d

Figure 4.8: Histograms of the different subpopulations a) h1, b) h2, c) p1 and d) p2,
calculated with an integration of 5000 time units long.

4.5 Herbivore conservation in case of a migrating preda-
tor

Compared with the configuration of the previous section we add a coupling between
the two predator subpopulations. The predator migration from 2 tot 1 and vice versa is
steered by the size of the predator population at both patches. A net flow of predators
from patch 1 to patch 2 occurs when p1 > p2. Following Janssen (2001) predator mi-
gration at a rate v is added: he allowed predator migration in the Rosenzweig-McArthur



4.5. Herbivore conservation in case of a migrating predator 79

a b

Figure 4.9: For (4.11) the second subpopulation has a fifth percentile of r2 = 0.0780.
A change of the parameters b2 and w with constraint (4.14) yields the optimal value
(4.16). a) only the values for r2, b) dashed line: r1, solid line: r2.

model by adding the term v(pj − pi) to the right hand side of the time derivative of
pi, j = 3 − i, i = 1, 2. He then used the carrying capacity and the migration rate
as bifurcation parameters and gave an insight into the possible dynamical behaviour
of the model. Huang and Diekmann (2001) constructed a predator migration rate that
depends upon the density of the herbivore and also added a diffusion rate. They did
a thourough bifurcation study of the model, and described changes in the number and
the stability of equilibria and limit cycles.

Allowing predator migration as described the system takes the form:

dh1

dt
= d1(t)(1 − h1

K1
)h1 − h1p1

h1 + c1
+ w(

h2

K2
− h1

K1
),

dp1

dt
=

h1p1

h1 + c1
− b1p1 + v(p2 − p1), (4.17)

dh2

dt
= d2(t)(1 − h2

K2
)h2 − h2p2

h2 + c2
− w(

h2

K2
− h1

K1
),

dp2

dt
=

h2p2

h2 + c2
− b2p2 − v(p2 − p1),

with
b1 = b2 = 0.8, c1 = c2 = 0.1, w = 0.5, v = 0.1 (4.18)

and
d1(t) = q(t), d2(t) = 3q(t), K1 = 0.5, K2 = 1. (4.19)

In Figure 4.10 the fluctuation in the herbivore and predator subpopulations at the
two patches are given. The fifth percentile of the two herbivore subpopulations are

r1 = 0.104 and r2 = 0.447. (4.20)
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The fifth percentile r1 is lower and r2 is considerably higher than the values we had
without migration of the predators. In Table 4.3 minimum, fifth precentile, mean and
maximum are given of the herbivores and predators. Compared with the situation of no
predator migration, the predator subpopulation at patch 1 is at a much higher level. The
fifth percentiles for both predators are much higher than previously. When we compare
Figure 4.10 with 4.6, we see that the populations fluctuate with a lower frequency now.
Moreover, Figure 4.10 shows much more proportionality, between h1 and h2 as well
as between p1 and p2. The histograms of the subpopulations are shown in Figure 4.11.

a

b

Figure 4.10: The behaviour of the herbivore and predator populations, where migra-
tion between the predators is allowed. Part of the stationary solution of (4.17) is de-
picted. a) h1 (black line), h2 (grey line), b) p1 (black line), p2 (grey line).

To improve r1 and r2 the parameters w, v, b1 and b2 are varied separately. The
results are shown in Figure 4.12. Increasing the predator migration rate v from the
value 0.1 up to 0.2, gives rising values for r2, whereas the value of r1 does not change
much, see Figure 4.12 a). For values of v between 0 and 0.03 we have that r1 falls, it
then increases until v = 0.05 and then remains fairly the same for larger values of v.
For v between 0 and 0.01 r2 falls and grows again for higher values of v. For values
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min fifth percentile mean max
h1 0.00106 0.104 0.235 0.495
p1 0.00811 0.0838 0.601 1.03
h2 0.00130 0.447 0.704 0.995
p2 0.0179 0.156 1.51 2.78

Table 4.3: Minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 for an
integration of 5000 time units long, with unperturbed parameters.

of v below 0.025 we have that the conditions in patch 1 are better for the herbivores,
whereas for higher values of v, the herbivores in patch 2 are far better of.

Improving the migration of the herbivore by taking values above w = 0.5 yields
an increase of r1 but we see that at the same time r2 decreases so the positive effect is
rather limited, see Figure 4.12 b). A strong decrease of the coupling coefficientw below
the value 0.5 has a negative effect upon the herbivore at patch 1, but a strong positive
effect upon the herbivore in patch 2. Depending on which herbivore subpopulation
needs to be protected, the herbivore migration rate w should be decreased or increased.

An increase of the predator death rate b1 has hardly any effect at all on the fifth
percentiles of the herbivores, increasing b2 slightly improves the situation for the her-
bivore subpopulations at both patches, see Figure 4.12 c) and d), where the death rates
are varied between 0.80 and 0.82.

4.6 Conclusions
Species conservation in a changing habitat has become an important topic. Degradation
of a habitat may bring the size of a local population of a species to a critically low level.
Unfortunately, restoring the situation is not always possible: a decrease of the available
life space because of human activities cannot be reversed in many cases (Groom et
al., 2005). A way to improve the survival chance of a local species is found in the
introduction of wildlife corridors facilitating the exchange between subpopulations of a
species at different locations. Enhanced migration may improve the survival of the total
population. We conclude that at a local level this is not guaranteed using a common
type of population model. Factors, not taken in consideration, such as an increase of
the genetic diversity may have a positive effect. At the other hand negative effects such
as the risk of spread of a disease cannot be excluded either (Gog et al., 2002).

Before we draw more conclusions from our study we remark that the models we
investigated, as well as the ones from the literature, indicate that the effect of changes
in the model parameters strongly depends on the choice of the model. Two elements
are important: the type of interaction between the different species and the way each
species disperses in a fragmentized habitat.

General rules on the effect of conservation measures are hard to formulate (Eti-
enne and Heesterbeek, 2001). One needs to quantify the amount of effort (the cost)
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a b

c d

Figure 4.11: Histograms of the different populations a) h1, b) h2, c) p1 and d) p2,
calculated with an integration of 5000 time units long, where migration among the
predators is allowed.

that is needed to make certain changes in a metapopulation. The available budget is
another factor that has to be taken in consideration. Westphal et al. (2003) find that
the effect of conservation strategies, (enlarging existing patches, enhancing corridors
between patches, creating new patches) is time dependent: the state of the metapop-
ulation matters for the optimal solution and the sequence of actions is critical. One
should not only evaluate what actions should be taken, but also when. Furthermore,
general rules cannot be made since they depend on model parameters and the config-
uration of the metapopulation. This means that an optimal strategy for one particular
metapopulation may not be valid for a metapopulation that consists of a different kind
of species. This does not make a population viability analysis (PVA) useless but lim-
its its scope, since different populations may behave differently and can therefore not
always be compared.

As for our model, a better corridor for a species does not automatically result in
less deep dips in the local population. In Section 4.3 we noticed that for a single
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a b

c d

Figure 4.12: Fifth percentiles r1 (black lines) and r2 (grey lines) as functions of pa-
rameters a) v, b) w, c) b1 and d) b2. In all figures the references values are v = 0.2,
w = 0.5, b1 = b2 = 0.8.

species model with uncorrelated climatic fluctuations at the two patches increase of the
coupling did not improve the local conditions for the species. This conclusion is only
drawn for the model with the given dispersion mechanism. Other types of migration
behaviour may have a different effect. In the same section it is also concluded that for
the model under consideration the degree of coupling between the two patches does
influence the speed of recolonization in case of full local extinction. All the model
choices and the results of varying different parameters are given schematically in Table
4.4.

In the more-species model of Section 4.4 a change in some of the parameters in-
duces a qualitative change: the predator at patch 1 dies out. The goal of the parameter
changes was to improve the conditions for the herbivore at patch 2 by enlarging the
corridor for the herbivore and/or increasing the death rate of the predator at patch 2.
Changing different parameters takes different efforts. Let there be an maximum avail-
able total effort. If this is completely put in increasing the death rate of the predator
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at patch 2, then the result, that is obtained, can be improved by redirecting a part of
the effort towards improving the corridor for the herbivore. In the optimal solution that
is derived in this way the predator at patch 1 dies out. Clearly, biodiversity may be
influenced by conservation measures in a way that is not easy to foresee.

In Section 4.5 we considered in more detail the effect of changing the parameters
of the herbivore and the predator corridors and the death rate of the predators. An
increasing migration rate v of the predators has a negative effect on the herbivores in
both patches for very small values of v. First the herbivores in patch 1 are better off,
but after the predator migration rate has passed a certain value, this changes. For higher
values of this migration rate the conditions for the herbivores in patch 2 improve con-
siderably whereas they remain fairly the same in patch 1. Increasing the death rate of
the predator in patch 1 has no effect on the conditions of the herbivores and increasing
it in patch 2 improves the conditions of the herbivores slightly. In Figure 4.12 it is
seen that facilitating the migration of the herbivore indeed improves the situation for
the herbivore at patch 1 but worsens the conditions for the herbivore at patch 2. These
drawbacks are not as dramatic as in the case of local species extinction, but sufficiently
important to stay aware of the possibility that events may occur that are not foreseen
and therefore not excluded in the formulation of the optimization problem. Even if the
optimal solution has all desired properties it may be so that along the path from the
actual situation to the optimal state inevitable events occur that withhold the system
from arriving in that state.

Above we have brought up a number of arguments to improve the actual situation
for a metapopulation by changing parameters in small steps. In literature there are
examples in which it is better to take one large step to escape from an undesirable
ecological regime, e.g. Scheffer (1991) explains a way to bring down the turbitidy level
in a lake using a minimal dynamic model for the fish and algae populations. For more
complex models such strategies cannot be developed that easy. Thus, we stay with the
strategy of small steps. It means that in parameter space we choose the direction of
the highest improvement given a small amount of effort. When this direction is found
(gradient method) a small step is made and next the procedure is repeated. For large
scale models with many parameters it can be a problem to find this best direction of
change. This problem can become unsurpassable if a large computing time is needed
to evaluate the outcome for a new set of parameter values. In the present study, where
climatic fluctuations are part of the input, a large time interval should be considered
requiring a long integration of the full system. It is therefore desirable to find optimal
parameter changes with a miminum amount of computation time. In the next chapter
we introduce a method from meteorology (chapters 2 and 3) that efficiently selects
directions in parameter space that yield a high improvement. Similar to the approach
in the climate study where first the method for finding efficient parameter perturbations
was tried out in a simple atmospheric model, the Lorenz-63 equations, we will apply
the technique in an ecological context to the model we presented here.



4.7. Acknowledgements 85

model characteristics
(4.3) species configuration herbivores, no predators

herbivores migrate
climate uncorrelated for both patches

acts upon carrying capacities
parameter varied migration rate w
results increasing migration rate has no effect

it does influence speed of recolonization
(4.10) species configuration both herbivores and predators

only herbivores migrate
climate identical for both patches

acts upon intrinsic growth rates
parameters varied migration rate w and death rate predator, b2

with cost function
results predator 1 dies out for optimal parameter choice

(4.17) species configuration herbivores and predators
herbivores and predators migrate

climate identical for both patches
acts upon intrinsic growth rates

parameters varied migration rates w and v, death rates predators
b1 and b2 seperately

results increasing predator migration rate →
positive effect on herbivore 2 for v > 0.025
negative effect on both herbivores for smaller
values of v, it depends on value of v
which patch has the best conditions
increasing predator death rates →
minor positive or no effect on herbivores,
increasing herbivore migration rate →
positive for herbivore 2, negative for herbivore 1

Table 4.4: Different choices of the model and results of parameter changes.
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CHAPTER 5

Species conservation by optimal
parameter change in a metapopulation

model

In this study we carry out a parameter sensitivity analysis for a herbivore-predator
metapopulation model, consisting of two patches. Only the herbivores are allowed to
migrate between the patches. Furthermore, the instrinsic growth rates of the herbivores
depend on climate fluctuations. Our objective is the conservation of the herbivores. We
are interested in finding the parameter perturbations that will reduce the extinction risk
of one of the subpopulations the most. We make use of the short term behaviour of
the model. In the neighbourhood of a short interval of the non-linear reference (unper-
turbed) orbit the linear error growth can be calculated. The perturbation that causes the
largest error growth, the so called first singular vector, can be computed with the use of
adjoint equations. The adjoint of a model acts as a backward integration. It turns out
that for some cases, the direction of the first singular vector is also as a parameter per-
turbation effective in changing the dynamics in a long model simulation. The selection
is based on the behaviour of this local error growth. This adjoint method is compared to
a method where parameter perturbations are randomly chosen. Here we to carry out a
test for a model with only few parameters. However, it can be applied to models with a
very large number of parameters, making the adjoint method an interesting alternative
for the random method as then the required number of runs cannot be realized within
a realistic computing time. A same argument holds for the use of a systematic method
of finding an optimum.

5.1 Introduction
A metapopulation is a set of local populations spread out over different habitat patches,
between which migration is possible. Metapopulation models are used to describe the
dynamics of spatially distributed populations. In the literature a wide spectrum of mod-
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els is found. The models range from occupancy models (describing patches that are
either occupied or empty), see e.g. Levins (1970), to individual based models (describ-
ing the local population dynamics), see e.g. DeAngelis and Gross (1992). In between a
type of structured metapopulation model exists that describes the population dynamics
as well as the spatial dynamics by modelling migration and correlation among pop-
ulations. A good description of these different models and their use can be found in
Akçakaya (2000a). Models are an approximation of reality. In this process model
structure and model parameters are important features. They determine the reliability
of a model. The model parameters are estimated using data or are derived from fun-
damental physical principles. Inaccurate or insufficient data can result in uncertainty
in model parameters. Also, parameter estimation techniques are not flawless. When a
certain parameter value is unknown, a realistic upper and lower bound should be given.
The uncertainty in model parameters will influence the model output. When analysing
population dynamics, this parameter uncertainty should be taken into account (Conroy
et al, 1995, Akçakaya, 2000b, Moilanen, 2002, Drechsler et al., 2003).

In metapopulation modelling, parameter estimation may contribute to the practi-
cal use of the model output. Moilanen (2002) recognizes that errors, made in data
observation, may result in inaccurate parameter estimates which will consequently af-
fect the model predictions. He emphasizes three types of errors that commonly occur
in metapopulation data sets. First, patch areas are estimated or measured incorrectly.
Second, patches located within or around the study area may be missed. Third, patches
may be wrongly observed as empty. Effects of errors can depend on the characteristics
of the metapopulation, such as the fragmentation. Moilanen therefore generates, within
a stochastic patch occupancy model, a set of different systems, using simulated data.
The systems differ in many of their properties such as in the level of patch aggregation,
the distribution of migration distances and the rate at which local populations go extinct
and empty patches become colonized (turnover rate). Next, errors are added to the data
set of each system. These errors are randomly drawn from a uniform distribution. In-
correct estimation of a patch area influences the extinction risk, missing patches cause
overestimation of migration distances and finally wrongly describing patches as empty
can have a large effect on all these factors. It is therefore important to specify the data
errors that can occur and the effect they can have on the parameterization, especially
when the metapopulation model is used to make conservation management decisions.

5.1.1 Species conservation and sensitivity analysis
Conservation of a metapopulation can be enhanced by increasing the area of patches
(either by a fixed area or a fixed percentage) or the connectivity between certain patches.
These measures may decrease the risk of extinction of local populations and increase
the probability of re-colonization of empty patches. Conservation managers are inter-
ested in finding the optimal strategy for metapopulation persistence. Etienne (2004)
examines a detailed stochastic patch occupancy model to evaluate whether rules of
thumb can be formulated for optimal strategies. He suggests that the largest patch
should be enlarged if a fixed percentage of area can be added, the smallest patch should



5.1. Introduction 93

be enlarged if a fixed amount of area can be added and lastly, the distance between the
two largest patches should be reduced when given the choice between all distances
among pairs of patches. He points out that the strength of his rules strongly depends
on parameter values such as patch clustering and dispersal distance.

In this study we search for optimal parameter changes to conserve a specified
species within a predator-prey metapopulation model. This model describes the local
dynamics of both populations divided over two patches. The herbivores are allowed
to migrate between the two patches. Furthermore, the influence of climate upon the
intrinsic growth rates is taken into account. In chapter 4 this model has been used to
find the optimal management strategy given a fixed investment. Restricted by a cost
function small changes in the death rate of the predator in one of the patches and in the
migration rate of the herbivores are made.

The model used in this study contains a reasonably small number of parameters.
For more realistic and thus more complex models, the number of parameters will be
much larger. A large parameter set makes a parameter change analysis computationally
demanding. Not only for the purpose of conservation management such an analysis is
made, also for model sensitivity analysis we have to deal with large scale computa-
tions when changing parameter values. When dealing with uncertainty in parameters,
sensitivity analysis can help to identify the parameters that have a strong effect and
therefore should be given priority for a better estimation, i.e. by collecting more data.
If in adddition to a large number of parameters long simulation runs are required, then
a full scale sensitivity analysis may become problematic. In this study a large time
integration is needed to include a sufficient number of extreme weather conditions in
the evaluation of a choice of the ecological parameter values.

5.1.2 Finding effective parameter changes
In this study we test a method from meteorology that efficiently selects directions in
parameter space that cause a large change in a specific output variable related to the cli-
mate. First this method is introduced using the example of a simple atmospheric model
(chapter 2) and next applied to a more realistic atmospheric model (chapter 3). The
method may have a wider application, and could be used in metapopulation analysis
as well. We therefore want to test it for a simple metapopulation model. When proven
successful, the effectiveness of the method can be applied to a more realistic ecological
model. Five model parameters will be perturbed: the carrying capacities of the patches
for the herbivores, the death rates of the predators, and the migration rate of the herbi-
vores. They form the parameter vector α. We are interested in finding the combination
of perturbed parameter values that will most strongly affect the population dynamics,
as simulated with the model. In this study our objective will be the conservation of the
herbivores at each of the patches.

First, a model run with the original, unperturbed, parameter values is made. This
run is used as a reference to compare with model runs where the parameters are per-
turbed. The model runs cover a sufficiently large time interval so that extreme weather
conditions are likely included. The change in the population viability is monitored
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by observing the fifth percentile of the different populations. This is the value below
which the subpopulation is found 5 out of 100 times in a series of values taken at fixed
time intervals. The higher this fifth percentile, the better the conditions are for this
population and the smaller the risk of extinction. It is assumed that the effort to change
a parameter is the same for each parameter. The set of possible perturbations of the
parameter vector lies on a hypersphere centred around the original reference parameter
vector αr and with radius 0.05 times the length of αr. Once a perturbation δα has been
chosen, it can be added to αr, resulting in the new parameter vector αr + δα. A new
model run with these perturbed parameters can then be made and so on. The key ques-
tion is how to detect from the set just those perturbations that are highly favourable for
the purpose in mind. The goal is to improve the conditions of a selected population. In
this chapter we explore and compare several methods to find these perturbations.

In this study our aim is the conservation of the herbivores: we want to find para-
meter perturbations that favour the herbivore (sub)populations the most; this will result
in a lower extinction risk. In order to choose from the numerous possible combina-
tions of parameter perturbations, we develop an efficient method as an alternative to a
random method, because for large parameter sets a systematic method for computing
the gradient as a function of these parameters is not within reach. Presumabely, our
method will reduce the computing time considerably. The idea is that parameters, that
are likely to be effective, are selected on the basis of the short term behaviour of the
system. This means that the search is done using short simulations only, rather then
making long simulations without knowing whether the added parameter vector per-
turbation will have a large effect on the model outcome. To test the effectiveness of
the method for our model, we will collect a set with parameter perturbations chosen
with our proposed method and a set of randomly chosen ones. By comparing the two
sets, the effectiveness of our method will be monitored. For each perturbed simulation
within both sets, the fifth percentiles for the herbivores at both patches are calculated.
The success rate of both methods is evaluated by the number of fifth percentiles within
each set that are higher than the one of the reference run.

For the selection process that uses the short term behaviour of the model, we in-
troduce the tangent linear and adjoint model (see Errico, 1997, for a clear description).
Adjoint models have been commonly used for perturbations of initial conditions in for
instance climate models (see Courtier et al, 1993, for an overview), and more recently
for parameter perturbations (see e.g. Barkmeijer et al, 1996, Moolenaar and Selten,
2004). Because of the non-linear dynamics of the system, the tangent linear and ad-
joint models can only be used as approximations on a short time scale. Since we are
interested in perturbations in parameters, the variable space consists of the state space
extended with the parameter space. With the use of the tangent linear and adjoint model
the perturbation in the parameters can be found that results in the largest deviation from
the reference orbit in state space over a short time interval. This parameter perturbation
vector is called the first right singular vector and the vector containing the error in the
state variables at end time, the first left singular vector.

In this paper, a method is described that finds in an efficient way, parameter per-
turbations that cause a large shift in the fifth percentile of the herbivore subpopulations
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for a long run. Because the parameter perturbation is small, a large negative effect
is accompanied by a large positive effect in the opposite direction. Based on work
done by Moolenaar and Selten (2004) we select certain (scaled) left singular vectors
as parameter perturbation vectors that are likely to cause a large positive change in the
extinction risk for a predefined species in the long run. The selection of these singular
vectors is based on the first singular value being related to the direction of the largest
error growth in the state vector. The best choice of the singular vector is at the moment
just after the singular value has peaked. In this way, effective parameter perturbations
can be selected on the basis of the short term behaviour. This selection process saves
computing time compared to random selection of parameter perturbation, where the
rate of success of selecting an effective parameter perturbation is extremely low.

5.1.3 Overview

This study is built up as follows. In Section 5.2 the models are formulated: the
metapopulation model driven by the climate model. A reference run with unperturbed
parameters is made and the distribution in time of the local populations is described.
The fifth percentiles of the different subpopulations are given indicating the most vul-
nerable subpopulation. In Section 5.3 the tangent linear and the adjoint equations of
the model are introduced. It is explained how they can be used to find the parameter
perturbation that causes the largest error growth in state space for a short integration.
This perturbation is called the first singular vector. It is described how our proposed
method selects singular vectors from the evolution of the corresponding first singular
value. We will analyse whether these singular vectors are successfull in increasing the
fifth percentiles of the considered subpopulations. In Section 5.4 parameter perturba-
tions are added at random, in order to make a comparison with the constructed adjoint
method. By comparing the success rates of the different methods, the efficiency of the
adjoint method is evaluated. Finally, Section 5.5 contains our concluding remarks.

5.2 Distribution in time of the local population size

In this section, we describe a herbivore-predator metapopulation model containing two
patches, between which only the herbivores can migrate. We use the Rosenzweig-
MacArthur model (1963) for each patch. A migration term is added for the herbivores.
The system of coupled differential equation reads:

dh1

dt
= d1(t)(1 − h1

K1
)h1 − h1p1

h1 + c1
+ w(

h2

K2
− h1

K1
),

dp1

dt
=

h1p1

h1 + c1
− b1p1, (5.1)

dh2

dt
= d2(t)(1 − h2

K2
)h2 − h2p2

h2 + c2
− w(

h2

K2
− h1

K1
),
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dp2

dt
=

h2p2

h2 + c2
− b2p2,

where the state variables hi and pi denote the biomass of the herbivores and predators in
patch i respectively. This type of herbivore-predator model is commonly used, see e.g.
Sherratt et al. (1997), Rai and Anand (2004), Janssen (2001), Huang and Diekmann
(2001). The parameters di are the instrinsic growth rates andKi the carrying capacities
of the herbivores; bi are the death rates of the predators. The predator-prey interaction
is of Holling type II (DeAngelis, 1992). The parameter c represents the reciproke of
the slope at the origin of the functional response. Finally, w is the migration rate.
Migration among habitat patches is of ecological interest, see e.g. Hanski et al. (2000),
Ovaskainen and Hanski (2004), Ovaskainen (2004). Change of the migration rate may
affect the local dynamics of populations and ultimately the entire metapopulation. The
parameters are set at the following values:

b1 = b2 = 0.8, c1 = c2 = 0.1, w = 0.5, K1 = 0.5, K2 = 1. (5.2)

In our model, we include the influence of climate fluctuations upon the herbivore
population. To that end, the instrinsic growth rates d1 and d2 are made time dependent.
The effect of climate fluctuations, especially climate change, upon population dynam-
ics has a growing interest (i.e. Stenseth et al, 2002, Araújo et al, 2004, Preisser and
Strong, 2004). The influence of the climate upon the metapopulation model is an exter-
nal forcing and can lead to periods with low population sizes. A sudden extinction at
such a stage from a catastrophic event is not taken in consideration. Such a behaviour
should be described in a stochastic model (Burgman et al., 1993).

To mimic the climate, the Lorenz 84 equations (Lorenz, 1984) are introduced. It
is a simple model of the atmospheric flow. The Lorenz 84 model is a strongly trun-
cated spectral model of the atmospheric flow. It is defined by three coupled nonlinear
differential equations

dx

dt
= e(−y2 − z2 −Ax+AF ),

dy

dt
= e(xy −Bxz − y +G), (5.3)

dz

dt
= e(Bxy + xz − z).

The component x represents the strength of the zonal flow (westerly wind current) and
the components y and z represent the strength of the amplitudes of respectively the co-
sine and sine phases of a chain of large superposed waves. The parameter F is a forcing
from the north-south temperature gradient and G is a forcing from the continent-ocean
temperature contrast. ParameterB represents the strength of the advection of the waves
by the westerly current. The parameter e is introduced to alter the time scale of the cli-
mate model. In the original form of the model it is set e = 1. We choose e such that the
influence of the climate upon the model is large. The model shows chaotic behaviour
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for a large set of values in parameter space, from which we choose

A = 0.25, B = 4, F = 8, G = 1 e = 0.025. (5.4)

The models (5.1) and (5.3) are coupled by assuming the following dependency of
the intrinsic growth rates upon the climate:

d1(t) = z(t;x0, y0, z0) + γ, d2(t) = 3d1(t), (5.5)

where γ = 2.5, which is chosen such that z(t)+γ > 0 for all t. The vector (x0, y0, z0)
denotes the starting point in the Lorenz 84 model. Note that the time series for z(t) is
the same for both patches. Different time series could be taken, by taking a different
starting point in each patch. This could be a choice when the two patches are at a large
distance from each other, whereas for patches close together the same starting point
could be taken.

We make a long run of 5000 time units, with the parameters set at the values men-
tioned above. This time interval, starting after a spin up, is sufficiently large to get
a good insight in the viability of both herbivores and predators, taking the influence
of climate into account. The evolution of the first 500 time units is shown in Figure
5.1. Out of the herbivores, the subpopulation in patch 2 is the most vulnerable to fluc-
tuations although the carrying capacity is twice as high as in patch 1. However, the
climate has a larger influence upon patch 2. As can be seen in Figure 5.1, h2 has a
higher maximum and a lower minimum than h1. Predator-prey interactions cause this
large fluctuation of the herbivore at patch 2. As for the predators, the values of p1 are a
factor 100 smaller than those of p2.

In Table 5.1 minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2

are given. The fifth percentile is the value below which the subpopulation is found
5 out of 100 times in a series of values calculated at fixed time intervals. The fifth
percentiles of hi and pi are called rhi and rpi respectively and are calculated from the
time series of 5000 time units. For each time unit 100 integration steps were used, so
for each run we have a time series of 500000 points. Out of the herbivores, the one
in patch 2, has the largest extinction risk, which is pointed out by the values rh1 =
0.294 and rh2 = 7.80 · 10−2. These fifth percentiles will be used to monitor the
change in population dynamics when searching for the optimal parameter change, in
the subsequent sections. The higher the fifth percentile, the better the conditions are
for the corresponding subpopulation and the smaller the risk of local extinction.

To quantify the distribution of the size of a subpopulation, we calculate the his-
tograms of the subpopulations. Figure 5.2 shows these histograms for h1, p1, h2 and
p2. These graphs are obtained by sampling the attractor of the system (5.1) at 500000
points with step size 0.01. The areas that contain the first 5% of the histograms are in-
dicated. The histograms for the two herbivores, h1 and h2, are shaped quite differently.
The histogram of h1 shows one peak at the larger values and shows a very small area
in the neighbourhood of zero, whereas the histogram of h2 shows another peak at the
small values.
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min fifth percentile mean max
h1 9.98 · 10−2 0.294 0.408 0.479
p1 1.02 · 10−2 1.46 · 10−2 4.23 · 10−2 8.10 · 10−2

h2 2.33 · 10−2 7.80 · 10−2 0.518 0.883
p2 0.269 0.979 2.36 4.57

Table 5.1: Minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 for an
integration of 5000 time units long, with unperturbed parameters.

5.3 A method to select effective perturbations in a large
parameter set

In this section, we analyse the effect of parameter perturbations upon the subpopula-
tions. The perturbations that will improve the conditions of the population the most are
of greatest interest. The parameters under consideration are b1, b2 (the death rates of
the predators), K1, K2 (the carrying capacities of the herbivores) and w (the migration
rate). The unperturbed (reference) parameter vector is represented by

αr = (b1r, b2r,K1r,K2r, wr)T = (0.8, 0.8, 0.5, 1, 0.5)T . (5.6)

The parameter perturbations lie on a hypersphere, centred around αr. The length of a
perturbation vector δα = (δb1, δb2, δK1, δK2, δw)T is limited. We choose to restrict
it to 5% of the length of the reference parameter vector. This may be written as

< δα, δα >1/2= 0.05 < αr, αr >
1/2, (5.7)

where <,> is the Euclidian inner product:

< x, y >=
∑
i

xiyi. (5.8)

A perturbed vector in parameter space will take the form

αp = αr + δα = (b1r + δb1, b2r + δb2,K1r + δK1,K2r + δK2, wr + δw)T . (5.9)

The choice of this type of perturbation means that realisation of a change of each of the
parameters with one unit costs a same (financial) effort. The method then yields com-
binations of parameter changes that are highly effective given a fixed small (financial)
budget. In Section 5.5 it is discussed how to handle in case the effort per unit parameter
change differs for each parameter.

A position in the state space is indicated by the vector

x = (x, y, z, h1, p1, h2, p2)T . (5.10)
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a

b

Figure 5.1: a) Evolution of h1 (black) and h2 (gray) for 500 time units. b) Evolution of
100 · p1 (black) and p2 (gray) for 500 time units.

The aim of this study is to find the parameter perturbations that will improve the
chance of survival of a subpopulation most. Different objectives can be taken in con-
sideration. We choose a single subpopulation: either the herbivore at patch 1 or the
herbivore at patch 2. Other objectives may be chosen as well. Global species con-
servation may be the goal, then we have to consider a weighted sum of densities of
species over all patches. If biodiversity should be maintained, then the minimum of all
(sub)populations should be taken.

In this section we describe a method to select parameter perturbations within the
large set formed by the hypersphere. This method needs to be effective in the sense
that it has to have a high probability of drawing parameter perturbations that cause a
large change in the output. In this case the output is the fifth percentile of the herbivore
subpopulations. As remarked before a large negative effect is accompanied by a large
positive effect with the perturbation vector pointing in the opposite direction.

With a high probability a parameter peturbation with a large effect is found from a
linear analysis of the system behaviour near the reference orbit. For this purpose, the
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a b

c d

Figure 5.2: Histograms of the different subpopulations a) h1, b) h2, c) p1 and d) p2,
calculated with an integration of 5000 time units long.

tangent linear and adjoint equations that correspond with the system (5.1) are intro-
duced. The system (5.1) has only a few parameters, it is presented as a case study here.
The technique described can be used for dynamical systems with a much larger number
of parameters. Then no alternative exists that selects an effective parameter perturba-
tion within a realistic computing time. The idea is to use the short term behaviour of
the model to obtain an indication of the long term behaviour of the model for a new
set of parameters. If it is possible to identify on the basis of the short integrations, the
parameter perturbations that will likely cause a large change in a long term integration,
then this would save a considerable amount of computation time. Of course, due to the
chaotic behaviour of the model, this cannot be achieved in an exact way, because the
strange attractor cannot be scanned over its full (infinite) length. Moolenaar and Selten
(2004) developed a method where certain points at the attractor were chosen, for which
the parameter perturbations that caused the largest error growth on the short term, were
also effective in changing the long term integration of the model. The short term in-
tegration can be carried out efficiently using the tangent linear and adjoint equations
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of the model. This method was tested in the atmospheric Lorenz 63 model. We will
now apply this method to the metapopulation model (5.1), coupled to the Lorenz 84
atmospheric model (5.3).

In Section 5.3.1 the tangent linear and the adjoint equations are formulated and a
singular vector decomposition is made. In Section 5.3.2 it is explained how singular
vectors can be used as parameter perturbations. In Section 5.3.3 the simulation results
are discussed. A large set of likely effective perturbations is selected for which long
integrations are made and it is verified whether these perturbations are indeed effective
in the sense that the herbivore subpopulations are better conserved. In Section 5.3.4 it
is shown why the singular value of the adjoint method is of importance for choosing a
singular vector as a parameter perturbation vector.

5.3.1 Tangent linear and adjoint equations

The tangent linear and adjoint equations are useful tools to calculate the maximum
error growth over a time interval sufficiently short for the linear approximation to hold.
This can be applied to error growth due to small perturbations in the initial conditions.
The method is commonly used for this purpose. It also applies to error growth due to
small perturbations in the parameters. The tangent linear equations calculate the error
growth over a short time period. With the corresponding adjoint operator, a singular
value decomposition (SVD) can be made. The singular vector corresponding to the
largest singular value is the vector that causes the maximum error growth.

First a short reference orbit with unperturbed parameters is calculated, using the
nonlinear equations (5.1). These nonlinear equations are of the general form

ẋ = F1(x, α), (5.11)

where x is a vector in state space, α a parameter vector and F1 contains the right hand
side of the differential equations of the model. In order to allow perturbations in the
parameters and to calculate the error growth they can cause, we need to extend the state
vector x with the parameter vector α, resulting in the vector q:

q =
(

x
α

)
. (5.12)

The extended version of the system equations are:

q̇ =
(

ẋ
α̇

)
=
(

F1(x, α)
F2(α)

)
=
(

F1(x, α)
0

)
= F(q). (5.13)

The parameters remain constant in time, that is why F2(α) = 0. The parameter pertur-
bations will however, cause a deviation in state space. This deviation from the reference
orbit can be approximated using the tangent linear equations. The tangent linear equa-
tions are obtained by linearizing equation (5.13) around a reference (unperturbed) orbit
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qr:

q̇ = F(q) ⇒ ˙(qr + δqr) = F(qr + δqr) ≈ F(qr) + Jδqr + O(|δqr|2)
⇒ q̇r + ˙δqr ≈ F(qr) + Jδqr

⇒ ˙δqr ≈ Jδqr

,

(5.14)
where J is the Jacobi matrix:

J =
∂F(q)
∂q

|qr =

(
∂F1(x,α)

∂x
∂F1(x,α)

∂α
∂F2(α)
∂x

∂F2(α)
∂α

)
|qr =

(
∂F1(x,α)

∂x
∂F1(x,α)

∂α
0 0

)
|qr .

(5.15)
The equation

δq̇r(t) = Jδqr(t) (5.16)

is called the tangent linear equation. The evolution δqr(t) in extended state space
caused by a small initial perturbation δqr(0) can be approximated using this tangent
linear equation. However, we do not intend to perturb the initial state vector xr(0), but
only the parameter vector αr. The perturbation δαr is transformed into a perturbation
δqr(0) using a prolongation matrix P2:

δqr(0) = P2δα =
(

0
δα

)
. (5.17)

The evolution of this perturbation according to the tangent linear equation (5.16) may
be denoted by the propagation matrix (also called the resolvent operator) R:

δqr(T ) = R(0, T )δqr(0). (5.18)

Since the perturbations in the parameters remain constant during the integration, we
can write:

δqr(T ) =
(
δx(T )
δα(T )

)
=
(
δx(T )
δα(0)

)
. (5.19)

A projection matrix P1 is used to extract the state space δx:

P1q = P1

(
x
α

)
= x. (5.20)

The linear evolution of the error in the state variables can be formulated with the prop-
agation matrix R:

δqr(T ) = R(0, T ) · δqr(0). (5.21)

Thus we have

δx(T ) = P1δqr(T ) = P1R(0, T )δqr(0) = P1RP2δα = Mδα, (5.22)

where
M = P1R(0, T )P2. (5.23)
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δα = P2δq(0)

δqr(T ) = R(0, T )δqr(0)

δx(T ) = P1δq(T )

Figure 5.3: Schematic picture of the evolution of a perturbation in parameter space at
initial time, into a deviation from the reference orbit in state space.

To recapitulate, the above matrix M is used to approximate the effect δx(T ) on the
final state vector caused by a perturbation δαr of the parameter vector. This is depicted
in Figure 5.3.

The adjoint of M , the operator M∗ acts as a backward integration. Since M a real
matrix, the adjoint is equal to MT . The adjoint determines a perturbation at initial
time given the output at end time. We are interested in the parameter perturbation
that evolves into the singular vector corresponding to the largest singular value. This
perturbation can be found as follows. For the length of δx(T ) we have:

< δx(T ), δx(T ) >1/2

< δα(0), δα(0) >1/2
=
< Mδα(0),Mδα(0) >1/2

< δα(0), δα(0) >1/2
=
< MTMδα(0), δα(0) >1/2

< δα(0), δα(0) >1/2
,

(5.24)
where MT is the transpose of M and <,> is the Euclidian inner product. The factor
(5.24) is maximized when δqr(0) is the eigenvector of MTM with the largest eigen-
value. The eigenvalue problem becomes:

MTMv = λv. (5.25)

These eigenvectors are called singular vectors ofM . Singular vectors can be calculated
by making a Singular Value Decomposition of matrix M :

M = UWV T , (5.26)

where U is a column-orthogonal matrix (containing the left singular vectors), W is a
diagonal matrix with non-negative elements (the singular values) and V T is the trans-
pose of the orthonormal matrix V (containing the right singular vectors). These singu-
lar vectors are the eigenvectors of MTM :

MTMV = (UWV T )T (UWV T )V = VWUTUWV TV = VW 2V TV = VW 2

(5.27)
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and the eigenvalues are equal to the squares of the singular values in W . The matrix
M projects the right singular vectors (in parameter space) onto the left singular vectors
(in state space).

MV = UWV TV = UW. (5.28)

When the elements of W are put in increasing order, the first left singular vector is the
vector that maximizes (5.24). It is the first principal axis of the ellipsoid of Figure 5.3.
The first right singular vector in parameter space is the perturbation vector that caused
this largest deviation. For further reading on adjoint equations we refer to Errico (1997)
and to Lawson et al. (1995), who also apply this method to a model in population
dynamics.

5.3.2 Singular vectors as parameter perturbations
We will now use the mathematical techniques described in the previous section, on
the metapopulation model (5.1)-(5.5). In this case, the vector x in state space and the
vector α in parameter space read:

x = (x, y, z, h1, p1, h2, p2)T , α = (b1, b2,K1,K2, w)T . (5.29)

The tangent linear equations for x, y and z do not have to be considered because these
variables do not depend on the parameter vector α. For the other variables we have:

dδh1

dt
= [(z + 2.5)(1 − 2

h1

K1
) − p1

h1 + c1
+

h1p1

(h1 + c1)2
− w

K1
]δh1 + (5.30)

[− h1

h1 + c1
]δp1 + [

w

K2
]δh2 + [(z + 2.5)(

h1

K1
)2 + w

h1

K2
1

]δK1 +

[−w h2

K2
2

]δK2 + [
h2

K2
− h1

K1
]δw,

dδp1

dt
= [

p1

h1 + c1
− h1p1

(h1 + c1)2
]δh1 + [

h1

h1 + c1
− b1]δp1 + [−p1]δb1, (5.31)

dδh2

dt
= [

w

K1
]δh1 + (5.32)

[3(z + 2.5)(1 − 2
h2

K2
) − p2

h2 + c2
+

h2p2

(h2 + c2)2
− w

K2
]δh2 +

[− h2

h2 + c2
]δp2 + [−w h1

K2
1

]δK1 + [3(z + 2.5)(
h2

K2
)2 + w

h2

K2
2

]δK2 +

[
h1

K1
− h2

K2
]δw,

dδp2

dt
= [

p2

h2 + c2
− p2h2

(h2 + c2)2
]δh2 + [

h2

h2 + c2
− b2]δp2 + [−p2]δb2, (5.33)

dδb1
dt

= 0, (5.34)
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dδK1

dt
= 0, (5.35)

dδb2
dt

= 0, (5.36)

dδK2

dt
= 0, (5.37)

dδw

dt
= 0. (5.38)

For each short model run, starting at a certain point at the attractor, the corresponding
first singular vector and singular value are calculated. The runs must be short enough
so that the linear approximation is sufficiently accurate. In this case the time interval
is taken 200 time units long. The singular vectors and their singular values depend on
the starting point of the run. We make a short model run, calculate the first singular
vector and its singular value, and next make another short model run, starting at the
end point of the previous run. By plotting the consecutive singular values, we obtain
the evolution of the first singular value, see Figure 5.4.

Figure 5.4: Evolution of the first singular value

As can be seen, the first singular value fluctuates rapidly. When the singular value
is large (in a high peak), the maximum error growth is large and it can be said that the
corresponding reference orbit is then very sensitive to parameter perturbations. Our
hypothesis, based on the study Moolenaar and Selten (2004) with the Lorenz 63 model,
is that a singular vector corresponding to the singular value in the first local minimum
after a high peak, is likely to be a direction for a parameter perturbation that causes a
large change in a long model run. For a peak in the evolution of the first singular value,
we require that it has exceeded the value 1000. The singular vector that corresponds to
the singular value in the first local minimum after this peak, will then be selected. A
parameter perturbation will now be added to the model for which a large run will be
made. It is in the same direction as the selected singular vector in the short run of the
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linearized system, but its length will be scaled:

< δα, δα >1/2= 0.05 < αr, αr >
1/2, (5.39)

where δα is the perturbation vector and αr is the parameter vector containing the orig-
inal values.

In order to test whether our hypothesis holds for the model (5.1), 25000 long runs
will be made, each time with a different singular vector as parameter perturbation. This
singular vector has a singular value in a local minimum, and will be scaled such that its
length is 5% of the length of the original parameter, see (5.39). In order to find different
singular vectors that we can use, we computed a long sequence of singular values. A
peak of value 1000 or higher occurred on average every 15 runs, so for 25000 useful
singular vectors, around 375000 consecutive short integrations and singular value de-
compositions are needed. The simulation results are described in Section 5.3.3. For
comparison, again 25000 perturbed long runs will be made, but this time with differ-
ent randomly directed parameter vector perturbations scaled to the same length, as in
(5.39). The efficiency of this random method is described in Section 5.4, where we
compare it with the efficiency of our method.

5.3.3 Simulation results
In this section we apply the adjoint method for finding effective parameter perturba-
tions. We compute 25000 long runs each with a different first singular vector, cor-
responding to a singular value in a local minimum, as a parameter perturbation. All
long runs are integrated over 5000 time units and start after a spin up. For each per-
turbed run, the fifth percentiles of the different subpopulations are calculated, so for
each population group we have 25000 different fifth percentiles. The probability den-
sities of these fifth percentiles are shown in the histograms of Figure 5.5. The values
for the fifth percentiles for the unperturbed run are pointed out in the Figure by h1 ref,
h2 ref, p1 ref and p2 ref.

Figure 5.5 a) shows the result for herbivore h1. This histogram has only a small
range and is bounded by 0.330 and 0.415 on the horizontal axis. All the fifth percentiles
in this histogram are larger than reference value, h1 ref, meaning all perturbation vec-
tors lead to an improvement of h1. The histogram is skew and has its maximum to-
wards the right indicating that the majority of the parameter perturbations have a fifth
percentile that is close to the maximum. The maximum for rh1, 0.415, is 1.4 times
larger than the reference value, 0.294. The histogram for the second herbivore popu-
lation is shown in Figure 5.5 b). The histogram is bounded by 0.228 and 0.470. This
has a wider range than the histogram for herbivore h1. The histogram is skew with
its maximum towards the right. So, even though all these values are larger than the
reference value h2 ref, not all of all of them are close to the maximum. The maximum
of rh2 found, 0.470, is six times larger than the reference value, 7.80 · 10−2, which
shows that a large improvement is possible for the conditions of herbivore h2, more so
than for h1.
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Figures 5.5 c) and d) show the histograms for the predators p1 and p2. Since we
are only interested in improving the conditions for the herbivores, we will not go into
detail here. Two remarks will be made however. For the predator p1, 88% of the
selected singular vectors, worsen the conditions for p1, whereas, 69% of the selected
singular vectors improve the conditions for p2. So the chosen parameter perturbations
are likely to be favourable for predator p2 and at the same time disagreeable for predator
p1. Secondly, perturbations are drawn that result in the extinction of p1. Without a
predator in patch 1, the herbivore in this patch has a greater chance of survival. More
herbivores will migrate to patch 2, which is favourable for the predators in that patch.

a b

c d

Figure 5.5: Histograms of the fifth percentiles, where the direction of the first singu-
lar vector (with small singular value) is used as parameter perturbation. For each
histogram 25000 long integrations are made. a) h1 b) h2 c) p1 d) p2.

In Figure 5.6 the values for rh1 are plotted against the values of rh2. For each
perturbed run both rh1 and rh2 were calculated and these two values can be plotted in a
(rh1, rh2)-plane. This figure shows that the selected parameter perturbations that yield
the larger values for rh1 also yield larger values for rh2. Thus, effective parameter
perturbations are in fact favourable for both herbivores.
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Figure 5.6: (rh1, rh2)-plane for the model runs with selected singular vectors as para-
meter perturbations.

The parameter perturbation vector, found with this adjoint method, that gave the
best improvement for the herbivore subpopulation at patch 1 is the vector

(δb1, δb2, δK1, δK2, δw) = (5.40)
(2.88 · 10−2, 6.30 · 10−2, 3.82 · 10−2, 2.27 · 10−2, 1.36 · 10−2).

The parameters are then set as

(b1, b2,K1,K2, w) = (0.829, 0.863, 0.538, 1.023, 0.514). (5.41)

The fifth percentile rh1 changes from 0.294 (reference orbit) to 0.415. In Figure 5.7 the
evolution of the different populations computed with these new parameters are shown
for the first 500 time units (dashed lines). As a reference the evolutions calculated
with the unperturbed parameters are plotted as well (solid lines). Table 5.2 gives the
minimum, fifth percentile, mean and maximum for the different populations, computed
for a run of 5000 time units. Figure 5.7 a) shows the results for the herbivores h1

(black) and h2 (grey). It can be seen that for both populations the perturbed run has
less fluctuations, the trajectories stay longer at high values and there are less local
minimum. Figure 5.7 b) shows the results for the predators p1 (black) and p2 (grey).
Note that for the reference evolution (solid line) p1 is multiplied by a factor 100 and that
for the perturbed evolution (dashed line) p1 is multiplied by a factor 1000. This shows
that p1 has decreased remarkably. Its values still fluctuate, but this can’t be seen well at
this scale. For p2 it can be seen that the fluctuations have become less rapid. Comparing
the results of Tables 5.1 and 5.2 we see that for both herbivores the minimum as well
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as the maximum values have increased. For this parameter perturbation that gave the
largest rh1, also resulted in a large rh2. In fact, this rh2 is 97% of the largest rh2 found.
For p1 conditions have deteriorated, the minimum and maximum value have decreased
much and so has rp1. The minimum value for p2 has increased, but its maximum has
decreased. However, taking our indicator as measure conditions seem to have improved
for this population, since rp2 has a slightly larger value.

a

b

Figure 5.7: a) Evolution of h1 (black) and h2 (grey) for first 500 time units out of a 5000
time unit integration. b) Evolution of p1 (black) and p2 (grey) for first 500-time units
out of a 5000 time unit integration. Solid lines are the evolutions with the unperturbed
parameters, dashed lines are the evolutions perturbed with the singular vector (with a
singular value that occured after a high peak) that yielded the largest rh1. Note that p1

is multiplied by a factor 100 for the solid line and by a factor 1000 for the dashed line.

The parameter perturbation vector, found with the adjoint method, that gave the
best improvement for the herbivore subpopulation in patch 2 is the vector

(δb1, δb2, δK1, δK2, δw) = (5.42)
(3.44 · 10−2, 6.74 · 10−2, 2.91 · 10−2, 1.38 · 10−2, 1.38 · 10−2).
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min fifth percentile mean max
h1 0.183 0.415 0.479 0.528
p1 1.46 · 10−8 2.22 · 10−8 1.84 · 10−4 2.06 · 10−3

h2 4.58 · 10−2 0.456 0.674 0.951
p2 0.341 1.00 2.11 3.30

Table 5.2: Minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 for the
integration of 5000 time units long, with the first singular vector with small singular
value as parameter perturbation, that yields the largest rh1.

The parameters are now set as

(b1, b2,K1,K2, w) = (0.834, 0.867, 0.529, 1.014, 0.514). (5.43)

The value of rh2 changes from 0.0780 (reference orbit) to 0.478. Figure 5.8 shows
the evolution of the first 500 time units for a) the herbivores, and b) the predators.
These evolutions are quite similar to the ones in Figure 5.7, except for p1, which is
now multiplied by a factor 100000 for the perturbed simulation. Table 5.3 shows the
minimum, fifth percentile, mean and maximum for the simulation with the perturba-
tion that yields the largest rh2. Again, this parameter perturbation also yields a large
improvement for the herbivore h1, in the other patch, which is shown by rh1 which is
98% of the maximum rh1 found.

min fifth percentile mean max
h1 0.166 0.408 0.475 0.521
p1 9.27 · 10−27 7.56 · 10−25 1.02 · 10−7 4.74 · 10−6

h2 4.79 · 10−2 0.470 0.697 0.954
p2 0.301 0.887 1.96 3.06

Table 5.3: Minimum, fifth percentile, mean and maximum for h1, p1, h2 and p2 for the
integration of 5000 time units long, with the first singular vector with small singular
value as parameter perturbation, that yields the largest rh2.

In Figure 5.9 histograms of the distribution in time of the subpopulations sizes are
shown. The histograms of the reference simulation are shown (solid grey lines), along
with the histograms where the model is perturbed with the singular vector that yields
either the largest rh1 (solid black lines) or the largest rh2 (dashed black lines). In Figure
5.9 a) the different histograms for h1 are shown. It is clear that both perturbations result
in a shift of the histogram towards the right. The histograms of h2 are shown in Figure
5.9 b). These histograms also show a shift to the right and the peak between the values
0 and 0.1 that is clearly present in the unperturbed histogram has nearly vanished in the
perturbed histograms. In the perturbed runs there are for h2 much less values that are
lower than 0.5. Figure 5.9 c) shows the histograms for p1. Conditions have worsened
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considerably in the perturbed runs for this predator. Both histograms lie far left in this
figure. For the second predator, p2, the ranges of the perturbed histograms have become
smaller especially at the upper bound, as can be seen in Figure 5.9 d).

The two differences between the two patches are that the intrinsic growth rate,
which depends on the climate fluctuations, of patch 2 is 3 times higher and its carrying
capacity is twice as high as in patch 1. The optimal parameter perturbation for the
herbivores in patch 1 (5.41) have higher predator death rates than the optimal parameter
perturbation for the herbivores in patch 2 (5.43), whereas the carrying capacities are
higher for patch 2. For both parameter perturbation vectors, the perturbation in the
death rate of the predator in patch 2 is the largest component. The migration rates are
approximately the same.

a

b

Figure 5.8: a) Evolution of h1 (black) and h2 (grey) for first 500 time units out of a 5000
time unit integration. b) Evolution of p1 (black) and p2 (grey) for first 500-time units
out of a 5000 time unit integration. Solid lines are the evolutions with the unperturbed
parameters, dashed lines are the evolutions perturbed with the singular vector (with a
singular value that occured after a high peak) that yielded the largest rh2. Note that p1

is multiplied by a factor 100 for the solid line and by a factor 1000000 for the dashed
line.
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a

c d

Figure 5.9: Histograms of the different subpopulations a) h1. b) h2. c) p1. d) p2. Grey:
unperturbed, black solid: perturbed with singular vector that yielded largest rh1, black
dashed: perturbed with singular vector that yielded largest rh2.

5.3.4 Importance of the singular value
In the previous subsection we showed that the first singular vector that correspond to a
singular value that occurs just after a high peak in its evolution, has a high probability
to be a parameter perturbation that is effective in improving the conditions for the
herbivores. This method of finding effective parameter perturbations was first evaluated
for the Lorenz 63 model (Moolenaar and Selten, 2004) and now proves to be effective
in a metapopulation model as well. The method was first developed on the basis of
empirical findings, see Section 1.3. The question why these particular singular vectors
are effective remains to be answered. We can however, compare the singular vectors
that correspond to a singular value after a high peak, with the singular vectors that
correspond to a singular value in a high peak. A high singular value means that the
short run is very sensitive to small parameter perturbations. Thus, one might be tempted
to choose the perturbations in the direction of the singular vectors that correspond to
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singular values in a high peak.
In Figure 5.10 the histograms of the fifth percentiles for the different populations

are shown for this alternative method (dashed dotted lines). The solid black lines are
the histograms that correspond with the results of the adjoint method described in the
previous section. Now, 25000 long term integrations were made with different singular
vectors corresponding to singular values in a high peak. The histograms for the her-
bivores are shown in Figure 5.10 a) and b) for h1 and h2 respectively. It can be seen
immediately that these perturbations are not as effective as the singular vectors chosen
with the previous adjoint method. The histograms for the herbivores are much closer
to the reference values, h1 ref and h2 ref and they do not reach the largest values of
rh1 and rh2 by far. For the predators these newly selected singular vectors have mainly
a positive effect on p1, but a negative effect on p2.

The above considerations land us to the conclusion that the singular vectors corre-
sponding to singular values that occur after a high peak, that is after a sensitive area, are
far more likely to be parameter perturbations that are effective in improving the condi-
tions for the herbivores, than the singular vectors corresponding to singular values in a
high peak, that is exactly in a sensitive area.

5.4 Random selection of parameter perturbations
In this section, the adjoint method is compared with a random method. For the random
method, perturbation vectors are drawn at random from a uniform hypersphere in pa-
rameter space, centred at the reference parameters. Again we require that the length of
the perturbation vectors, δα is 5% of the length of the parameter vector that contains
the unperturbed parameters, αr, so

< δα, δα >1/2= 0.05 < αr, αr >
1/2, (5.44)

where <,> is the Euclidian inner product.
Figure 5.11 shows the histograms of all the populations for both the adjoint method

from Section 5.3.3 and the random method. The solid lines are the histograms of the ad-
joint method and the dashed lines depict the histograms of the random method. Figure
5.11 a) shows the two different histograms for herbivore h1. The random method gives
values for rh1 between 0.038 and 0.426. It looks like a unimodal function with 36%
of its values on the right hand side of h1 ref=0.294, which is the value of rh1 when
using the unperturbed parameters. This means that only 36% of the randomly chosen
perturbation vectors yield an improvement. The range of the histogram of the adjoint
method lies at the very right of the histogram that belongs to the random method. This
clearly shows that the adjoint method has a much higher probability of drawing pa-
rameter perturbations that will improve the population of h1 than the random method
does.

The histograms for the different methods for the second herbivore population are
shown in Figure 5.11 b). Here, for the random method, the values of rh2 lie between
0.0141 and 0.562. The reference value, h2 ref=7.80 · 10−2 lies much to the left of
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a b

c d

Figure 5.10: Histograms of the fifth percentile of different methods, solid black line
is first singular vector (with small singular value after a peak) as perturbation and
dashed-dotted black line is first singular vector (with large singular value in a peak).
For each histogram 25000 long integrations are made. a) h1 b) h2 c) p1 d) p2.

this histogram, however 46% of the drawn vectors give a value for rh2 that is larger
than h2 ref. The histogram shows that much improvement is possible for this herbi-
vore subpopulation, since the largest rh2 found is seven times larger than h2 ref. The
histogram of the adjoint method lies in the right side of the histogram of the random
method, but does not quite reach its largest value. However, it can be said again that the
adjoint method has a higher probability of drawing parameter perturbations that will
improve the population of h2, than the random method.

Figures 5.11 c) and d) show the different histograms for the predators p1 and p2.
For predator p1 we have that 52% of the random perturbation vectors worsen its con-
ditions, compared to 88% of the perturbation vectors drawn with the adjoint method.
This means that the adjoint method is more likely to draw perturbation vectors that
worsen the conditions for p1. The random method has a higher probability to draw per-
turbation vectors that worsen the conditions for p2 than to improve them. Here, 73%
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of the perturbation vectors worsen the conditions of p2. So for this predator the adjoint
method is more beneficial than the random method.

a b

c d

Figure 5.11: Histograms of the fifth percentile of different methods, solid black line is
first singular vector (with small singular value after a peak) as perturbation, dashed
line is random perturbation, For each histogram 25000 long integrations are made. a)
h1 b) h2 c) p1 d) p2.

Let us first consider the parameter choice that leads to the largest improvement for
the herbivore subpopulation at patch 1. The randomly chosen parameter perturbation
vector, that yields the largest rh1(= 0.424) is

(δb1, δb2, δK1, δK2, δw) = (5.45)
(3.50 · 10−2, 5.02 · 10−2, 5.58 · 10−2,−9.54 · 10−3,−7.42 · 10−4).

Note that this vector contains both positive and negative values. The new parameters
are:

(b1, b2,K1,K2, w) = (0.835, 0.850, 0.556, 0.990, 0.499). (5.46)
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For this parameter perturbation, the perturbation in the carrying capacity of herbivore
1 is the largest component. The perturbation in the death rate of predator 2 is not as
large as the ones in the optimal parameter changes found with the adjoint method. Fur-
thermore, the changes in the carrying capacity of herbivore 2 and the migration rate
are in the negative direction and a factor 10 and 100 respectively smaller than the other
changes.

For the herbivore subpopulation at patch 2 we obtain the following. The ran-
domly chosen parameter perturbation vector, that yields the largest rh2(= 0.562) is

(δb1, δb2, δK1, δK2, δw) = (5.47)
(7.26 · 10−3, 8.28 · 10−2, 4.15 · 10−3,−3.96 · 10−3, 1.56 · 10−3).

Note again that this vector contains both positive and negative values. The new param-
eters are:

(b1, b2,K1,K2, w) = (0.807, 0.883, 0.504, 0.996, 0.502). (5.48)

In this perturbation vector is dominated in the positive b1 direction by far, it is a factor
10 higher than the perturbations in the other directions.

As in the previous case, the value of rh2 exceeds the largest value found with the
singular vectors as parameter perturbations. Thus, the best improvements for both her-
bivore subpopulations obtained with the random method are just better than the ones
obtained with the adjoint method. However, when drawing a random parameter per-
turbation and a perturbation selected with the adjoint method we see from the Figures
5.11 a,b that the probability that the random one is better is extremely small.

5.5 Concluding remarks
This study is set out to find parameter perturbations that optimally change the popula-
tion dynamics in a metapopulation model, in the sense that locally herbivores have a
better chance of survival. The parameters in the model we use are not based on data.
In fact the herbivores and predators of our model do not represent real world biologi-
cal species. The parameters are chosen within realistic boundaries in order to capture
different characteristic dynamics. It is assumed that the cost of changing a parameter
is the same for each parameter. The maximum change is 5% of the length of the origi-
nal parameter vector. This can be thought of as having a perturbation set that lies in a
unit hypersphere that is centred around the original parameter values. A perturbation
that is drawn from this unit sphere is then scaled such that the length of this vector
is 0.05 times the length of the vector containing the original parameter values as its
elements. Of course, this results in a numerous amount of possible parameter pertur-
bations. Assumingly a lot of the perturbation vectors will not have much effect on the
dynamics for a long simulation. It is of interest to find the parameter perturbations that
will change the population dynamics the most for a long simulation, especially in terms
of conservation of populations. Conservation of a population was measured using the
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fifth percentile of each population group. The higher this fifth percentile, the better the
change of survival for this particular population. The method we developed can also be
used for the purpose of making a sensitivity analysis. It shows which parameters affect
the output the most in case parameters change their value. It also answers the question
about the uncertainty in the model output given the uncertainty in the parameter values.
For realistic models, parameter values are estimated with the use of data and knowl-
edge of the underlying (physical) processes. However, this data can be insufficient and
inaccurate, leading to errors in the parameter estimates (Moilanen, 2002, Conroy et al.,
1995, Akçakaya, 2000, Drechsler et al., 2003).

A method to find optimal parameter perturbations for conserving populations was
presented in Section 5.3. The tangent linear and adjoint model were used to calculate
singular vectors. The first right singular vector lies a unit sphere in parameter space,
centred around the reference parameter values. It evolves into the first left singular
vector that gives the largest deviation from the reference solution at end time. These
calculations are made for a short time period, because the linear approximation of the
model needs hold with a sufficient accuracy. In the adjoint method that is tested in
this study, certain parameter perturbations that are optimal in changing the population
dynamics in a short model run, turned out to also be optimal in a long model run. The
selection of the singular vectors was based on the singular value. When computing con-
secutive runs, where the initial condition of a next run is the end point of the previous
run, the evolution of the singular value can be observed. It turned out that the singular
vector corresponding to a singular value that occurred after a high peak was likely to
be an optimal parameter perturbation in terms of conserving the herbivores. All the
perturbations selected by this method resulted in fifth percentiles that were larger than
the original fifth percentiles, for the herbivores. The largest fifth percentile found for
the herbivore in patch 1 was 1.4 times larger than the original value. For the herbivore
in patch 2 the possibility for improvement turned out to be even larger, the largest fifth
percentile found for this population was 6 times larger than the original value.

To test the above selection procedure, also singular vectors were selected that corre-
spond to a singular value in a high peak. The larger a singular value, the more sensitive
the (linear) model is to parameter perturbations, for a short integration time. However,
these perturbation vectors were not as effective in a long simulation as the previous
ones. They did yield improvement for the herbivores. All the fifth percentiles were
larger than the original value, however, they were smaller than the ones found with the
singular vectors corresponding to a value in a local minimum, after a high peak. This
same result was found in Moolenaar and Selten (2004) where these techniques were
applied to a simple atmospheric model.

The adjoint method was also compared to a random method. In the random method,
parameter perturbations were drawn from the unit sphere centred around the original
values, with a uniform distribution. These perturbations yielded to both improved and
worsened conditions for the herbivores. For the first herbivore only 36% lead to an
improvement, whereas 46% improved the conditions for the second herbivore. Figure
5.11 shows the histograms of the fifth percentiles for both the adjoint and the ran-
dom method for the different populations. It can be seen that for the herbivores, the
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adjoint method draws parameter perturbations that yield fifth percentiles that lie on
the right side of the histogram corresponding to the fifth percentiles calculated with
the randomly chosen parameter perturbations. It can be concluded that the parame-
ter perturbation vectors drawn with the adjoint method have a higher probability to be
effective in improving the conditions for the herbivores, than the random method.

In this study it is assumed that the cost to change a parameter is the same for all.
We may drop this assumption and allow to parameters, for which the change by one
unit costs less effort, a larger range than for the others. This can be done by adding
a matrix containing weights to the norm. The unit sphere in parameter space will be
scaled. It will still be a unit sphere, only with respect to a different norm. Initially we
had

< δα, δα >= 1, (5.49)

where δα is the vector containing the parameter perturbations. A diagonal matrix D
will be added, with as its diagonal elements εi the weighing factors. If for instance, we
want to allow the first parameter α1 a perturbation twice as large as the for the other
parameters, we take ε1 = 1

2 and the value 1 for the other diagonal elements. We now
have for the unit sphere at initial time:

< Dδα,Dδα >= 1. (5.50)

The optimization problem now becomes:

< δx(T ), δx(T ) >1/2

< Dδα(0),Dδα(0) >1/2
=
< DTMTMDδαr(0), δαr(0) >1/2

< Dδα(0),Dδα(0) >1/2
, (5.51)

and a singular value decomposition needs to be made with DTMTMD. Proceeding
with the computations in this way we find that the parameter perturbation vector then
becomes D−1v.

The adjoint technique proved to be very useful for finding optimal parameter chan-
ges for species conservation a metapopulation model. Although already widely used
in meteorology (i.e. Courtier et al., 1993, Barkmeijer et al., 2002, Moolenaar and Sel-
ten, 2004), it is a fairly unknown technique in metapopulation modelling. The method
shown in this article was first tested in an atmospheric model (Moolenaar and Selten,
2004) and proved to be successful for an metapopulation model as well. In this study
a metapopulation was used that was coupled to an atmospheric model. We chose to
only perturb the parameters in the metapopulation model. However, perturbations in
the climate model could have been taken into consideration as well. For this, the tan-
gent linear equation would have to be extended with the equations for the atmospheric
model. In this way, uncertainty in the climate model, or even the effect climate change
could have on a metapopulation could be estimated. When first determining bound-
aries in which the climate parameter models are uncertain, the extreme changes for
the dynamics of the populations can then be calculated. The interest in the effect of
climate change upon ecosystems is strongly growing (i.e. Stenseth et al., 2002, Araújo
et al., 2004, Preisser and Strong, 2004). The adjoint method proposed in this study
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opens new possibilities for conservation management and sensitivity studies of large
scale models.
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Summary

Uncertainty in the outcome of climate and ecosystem models is widely recognized. A
contributing factor is uncertainty in the value of parameters as well as uncertainty in the
understanding of physical processes within these systems. Because of this uncertainty
a range of outcomes is usually given. This range can be too large to gain insight in
the possible evolutions, for instance in terms of climate change. Policy making might
be hindered by this uncertainty, for instance policies on reducing greenhouse gases
emissions. It is evident that the parameters, the model is most sensitive to, need to be
identified. Within an uncertainty study, a parameter sensitivity study is inevitable.

Numerical models are used to simulate physical processes such as the atmospheric
circulation and the dynamics of metapopulations. The physical processes can be ex-
pressed in mathematical equations, forming a numerical model. By numerically ap-
proximating the solution, a prediction can be made of the future state of the model.
Small-scale processes are captured in so-called model parameters. Parameters are con-
stant values in the model. They can be estimated using observed data and/or fundamen-
tal physical principles. Inaccurate or insufficient data can lead to uncertainties in the
parameters, which can influence the model forecast. It is important to verify how much
small changes in parameters can change a model outcome. Especially parameter per-
turbations that have the largest effect on the outcome of the model are of importance.
The model is most sensitive to these parameter perturbations, which we call effective
parameter perturbations.

The more complex the model and the larger the amount of parameters, the more
difficult it is to find the most effective parameters. A random method, where param-
eters are perturbed at random, is then unfeasible. It is therefore useful to develop a
method that finds effective parameter perturbations in an efficient way. In this thesis
we describe a method that selects parameter perturbations that have a high probabil-
ity to cause a large change in the long term behaviour of the model. Use is made of
the short term dynamic behaviour of the model. A short part of the non-linear (unper-
turbed) reference orbit is considered. The error growth in the neighbourhood of this
reference orbit can be calculated with the use of the so-called tangent linear equations.
The parameter perturbation that causes the largest deviation from the reference orbit in
this short term, can be determined with the use of the so-called adjoint equations acting
as a backward integration. This perturbation is called the first singular vector.

In this thesis we carry out a parameter sensitivity analysis in two atmospheric mod-
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els; the Lorenz 63 model and the quasi-geostrophic three-level T21QGmodel. More-
over, we consider a metapopulation model, the Rosenzweig-McArthur model coupled
to the atmospheric Lorenz 84 model. In chapter 2 the Lorenz 63 model is used as
a case study. In the atmospheric circulation preferred patterns occur, referred to as
regimes. The atmosphere exhibits irregular regime changes. Climate is described by
the strength of the occurring regimes and by the frequency of transitions from one
regime to the other. Climate change will be looked at in terms of change in the strength
of preferred circulation patterns. The Lorenz 63 system contains only two regimes,
making it easy to analyse. When the parameters are set at their original values, these
regimes are equally visited in a long simulation and the model is symmetric. Parameter
perturbations are introduced that cause asymmetry in the model. One regime can be
visited more at the expense of the other and climate change occurs. We assume that the
parameters contain 5% uncertainty.

We develop a method that selects parameter perturbations that have a high proba-
bility to cause a large change in the climate, using the short term dynamic behaviour
of the model. We start with a direct method, where the parameter perturbations are
selected at random. This is feasible because it is a simple model that does not require
much computing time. We select 50000 different random perturbations and make a
long simulation with the perturbed model. The probability density function (PDF) of
the rate of asymmetry that the parameter perturbations can cause is unimodal with a
maximum at zero (no asymmetry). Next we select the parameter perturbations that
caused the largest climate change. With these parameter perturbations we make short
simulations. The short simulations are short enough for the linearity of the model to
be accurate enough. It appears that for some intervals of the attractor, these parameter
perturbations collide with the first singular vector. This occurs just after the reference
orbit has passed a highly sensitive area. This means that after the singular value (the
length of the singular vector) has peaked at a high value, it has shrunk again. Again we
make 50000 long simulations, this time with parameters perturbed in the direction of
the singular vectors, that are selected on the basis of the singular value. We compare
the two methods and it appears that the adjoint method is more efficient in selecting
effective parameter perturbations and hardly draws any perturbations that cause just a
small amount of climate change.

After these findings in a simple atmospheric model, we test the adjoint method in
a more realistic model, the quasi-geostrophic three-level T21QG model, described in
chapter 3. The T21QG model integrates prognostic equations for potential vorticity. It
contains several regimes, that can be identified with Empirical Orthogonal Functions
(EOFs). The first EOFs indicate the preferred patterns, such as the NAO (North Atlantic
Oscillation) and the PNA (Pacific North Atlantic oscillation). By using these EOFs
the dimension of the state space of the model can be reduced considerably. Changes
in regime behaviour indicate changes in the climate. In this study only the forcing
parameters are perturbed. Again we assume that the forcing parameters contain 5%
uncertainty.

We compare the random method and the adjoint method, developed in the context
of the Lorenz 63 model, as they are applied to the T21QG model. The vector con-
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taining the forcing parameters has a dimension of 1449 (degrees of freedom). This
is considerably larger than in the simple Lorenz 63 model. Since the T21QG model
requires more computing time, only 1000 different model simulations are feasible for
both methods. To carry out these simulations we use the high performance comput-
ing facility at the European Centre for Medium range Weather Forecasts (ECMWF),
where it is possible to make parallel runs. One simulation takes approximately 7 hours
in real time and we are able to make 32 runs simulateously. The climate change is
measured with the use of the first few EOFs. For every integration step the stream-
function is projected onto the EOFs. This gives an anomaly in the direction of every
EOF. A time series of the anomalies can be calculated for every EOF. Next a PDF is
computed of the time series of the anomalies. A change in the PDF, such as a shift or
change in shape, indicates climate change. It turns out that the parameter perturbations
that give the largest climate change in terms of the sum of absolute changes in PDF1
to PDF6 also give the largest change in only PDF1. So only changes in this PDF can
be used as an indicator of climate change. When comparing the random method with
the adjoint method, it turns out that the parameter perturbations drawn with the random
method hardly cause any change at all. The chosen singular vectors are more effective
in changing the regime behaviour, 35.7% of the found perturbations are more effective
than all the random perturbations. This also means that the random method does not
approach the optimal climate change. This is because of the large parameter space,
in which a numerous combinations are possible. Finding the most effective parameter
perturbation might not be within reach in this model with the adjoint method. However,
we show that although hampered by the large parameter set, the adjoint method comes
closer to selecting the parameter perturbation causing the largest climate change than
the random method.

In chapters 4 and 5 we use a metapopulation model, coupled to the simple atmo-
spheric Lorenz 84 model. The effect of climate variability and change upon ecological
systems is gaining attention. Here we use a herbivore-predator model, containing two
patches. The intrinsic growth rates and/or the carrying capacities of the herbivores de-
pend on the climate fluctuations. Fifth percentiles are used to indicate the state of the
populations with respect to their risk of extinction. The fifth percentile is the threshold
below which 5 out of a 100 values from a long time series are found. The higher this
fifth percentile, the lower the risk of extinction. A rise in the fifth percentile indicates
that the conditions of the corresponding population are improved.

In chapter 4 different versions of the model are investigated. We start with the
model where predators are absent and the herbivores can migrate between the patches.
The carrying capacities of the herbivores depend of the climate fluctuations. We use
two different, uncorrelated, time series of the climate for the patches. We analyse the
influence of the migration rate. It turns out that an increasing migration coefficient does
not improve the local conditions for a species. The degree of coupling between the two
patches does however influence the speed of recolonization in cause of a complete local
extinction. Next predators are added to the model. This time climate time series are the
same in the different patches and the instrinsic growth rates of the herbivores depend
on the climate. The goal is to improve the conditions of the most vulnerable herbivore



126 Summary

subpopulation by increasing the migration rate of the herbivores and/or the death rate
of the predators. For the optimal solution we found that the predator dies out in one
patch. Lastly the model is adjusted by also allowing migration between the predators
at the two patches. An increase in the migration rate between the predators, v, has a
negative effect on the herbivores for small values of v. It depends on the value of v
which patch has the highest improvement of conditions for the herbivores. Increasing
the death rates of the predators has little or no effect on the herbivores. Increasing the
migration rate of the herbivores has a positive effect on the herbivores in one patch,
but a negative effect on the herbivores in the other patch. It turns out that general rules
are hard to formulate. The type of choices that is made depends on the population that
needs to be supported. Changes in favour of a specific population can have unforeseen
negative consequences for other populations, with extinction as extreme.

In chapter 5 the second version of the model is used, so only the herbivores can mi-
grate between the patches and their intrinsic growth rates are influenced by the climate.
We consider a set of five parameters that can be perturbed: the intrinsic growth rates,
the death rates of the predators and the migration rate. The adjoint method as used in
in atmospheric models in chapters 2 and 3, is now tested in this metapopulation model.
We want to find the ecological parameter perturbations that decrease the risk of extinc-
tion of the herbivores as much as possible. It turns out that a parameter perturbation
in the direction of a selected singular vector improves the conditions for both herbi-
vores. In addition parameters in the driving climate model could be perturbed as well.
In this way the effect of climate change upon ecological systems could be analysed.
The adjoint method as described in this thesis opens new possibilities for conservation
management and sensitivity analysis of large scale models.



Samenvatting

Onzekerheid in uitkomsten van klimaat- en ecosysteemmodellen wordt algemeen er-
kend. Oorzaak hiervan is onzekerheid over de waarde van parameters en tevens onze-
kerheid over het begrip van fysische processen binnen deze systemen. Door deze on-
zekerheid wordt meestal een bereik van verschillende uitkomsten gegeven. Dit bereik
kan te groot zijn om een betekenisvol inzicht te krijgen in mogelijke evoluties, bijvoor-
beeld met betrekking op klimaatverandering. Beleidsvoering kan door deze onzeker-
heid belemmerd worden, bijvoorbeeld beleidsmaatregelen om de uitstoot van broeikas-
gassen te verminderen. Het is duidelijk dat het nodig is de parameters te identificeren
waar een model het meest gevoelig voor is. Binnen een onzekerheidsstudie is een pa-
rametergevoeligheids analyse onvermijdelijk.

Numerieke modellen worden gebruikt om fysische processen, zoals de atmosfe-
rische circulatie en de dynamica van metapopulaties, te simuleren. De fysische pro-
cessen kunnen worden uitgedrukt in mathematische vergelijkingen, die een numeriek
model vormen. Door de oplossing numeriek te benaderen, kunnen we een voorspelling
maken van de toestand van het model in de toekomst. Kleinschalige processen worden
samengevat in zogenaamde modelparameters. Parameters zijn constante waarden in
het model. Ze worden geschat met gebruik van geobserveerde data en/ of met behulp
van fundamentele fysische principes. Onnauwkeurige of onvolledige data kunnen tot
onzekerheden in de parameters leiden, wat de modelvoorspelling kan beı̈nvloeden. Het
is belangrijk om te bepalen in hoeverre kleine veranderingen in parameters een model
uitkomst kan veranderen. Vooral de mogelijke parameter verstoringen die het grootste
effect hebben op de uitkomst van het model zijn van belang. Het model is het meest
gevoelig voor deze parameter verstoringen, die we effectieve parameter verstoringen
noemen.

Hoe complexer het model en hoe groter de hoeveelheid parameters, des te moei-
lijker is het om de meest effectieve parameters te vinden. Een random methode,
waarmee parameters willekeurig worden verstoord, is dan niet haalbaar. Het is daarom
nuttig om een methode te ontwikkelen die op een efficiënte manier de meest effectieve
parameter verstoringen vindt. In dit proefschrift beschrijven we een methode die pa-
rameter verstoringen selecteert die een hoge waarschijnlijkheid hebben een grote ver-
andering in het lange termijn gedrag van het model te veroorzaken. Het korte termijn
dynamische gedrag van het model wordt gebruikt. Een korte sectie van de niet-lineaire
(onverstoorde) referentie baan wordt beschouwd. De foutengroei in de omgeving van
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dit deel van de referentiebaan kan uitgerekend worden met behulp van de zogenaamde
tangent lineaire vergelijkingen. De parameter verstoring die op dit korte interval de
grootste afwijking ten opzichte van de referentiebaan veroorzaakt, kan worden bepaald
met behulp van de zogenaamde adjoint vergelijkingen; deze procedure werkt als een
integratie terug in de tijd. Deze verstoring heet de eerste singuliere vector.

In dit proefschrift voeren we een parametergevoeligheids analyse uit voor twee at-
mosferische modellen; het Lorenz 63 model en het quasi-geostrofe drie-lagen T21QG
model. Tevens beschouwen we een metapopulatie model, het Rosenzweig-McArthur
model dat gekoppeld is aan het atmosferische Lorenz 84 model. In de atmosferische
circulatie komen voorkeurspatronen voor, ook wel regimes genoemd. De atmosfeer
vertoont onregelmatige regime’s overgangen. Klimaat wordt beschreven door de ver-
schijning van de verschillende regimes met een bepaalde sterkte en door de frequentie
van transities van het ene regime naar het andere. Klimaatverandering wordt bekeken
in termen van verandering in de sterkte van voorkeurspatronen in de circulatie. Het
Lorenz 63 model, bestudeerd in hoofdstuk 2, heeft maar twee regimes, wat het makke-
lijk maakt om te analyzeren. Wanneer de parameters hun originele waarden hebben,
worden deze twee regimes even vaak bezocht in een lange simulatie en het model is
symmetrisch. Parameter verstoringen kunnen asymmetrie in het model veroorzaken.
Het ene regime kan vaker worden bezocht ten koste van het andere en er treedt kli-
maatverandering op. We nemen aan dat de parameters 5% onzekerheid bevatten.

We ontwikkelen een methode die parameter verstoringen selecteert die zeer waar-
schijnlijk een grote verandering in het klimaat veroorzaken, gebruik makend van het
korte termijn dynamische gedrag van het model. We beginnen met een directe (ran-
dom) methode, waar de parameter verstoringen willekeurig worden geselecteerd. Dit
is haalbaar omdat het een simpel model is, dat niet veel rekentijd vergt. We selecteren
50000 verschillende willekeurige verstoringen en maken een lange simulatie met het
verstoorde model. De functie van de waarschijnlijkheidsdichtheid (PDF) van de mate
van asymmetrie die de parameter verstoringen kunnen veroorzaken is unimodaal met
een maximum bij het punt nul (geen asymmetrie). Vervolgens selecteren we de para-
meter verstoringen die de meeste klimaatverandering hebben veroorzaakt. Met deze
parameter verstoringen maken we korte simulaties. De korte simulaties zijn zo kort dat
de lineariteit van het model nog nauwkeurig genoeg is. Het blijkt dat voor sommige in-
tervallen van de attractor, deze parameter verstoringen samenvallen met de richting van
de eerste singuliere vector. Dit gebeurt net nadat een referentie baan een zeer gevoelig
gebied heeft gepasseerd. Dit houdt in dat nadat de singuliere waarde (de lengte van de
singuliere vector) een grote waarde heeft bereikt, deze weer sterk is gekrompen. We
maken opnieuw 50000 lange simulaties, waar deze keer de parameters zijn verstoord in
de richting van de singuliere vectoren, geselecteerd op basis van de singuliere waarde.
We vergelijken de twee methoden en het blijkt dat de adjoint methode veel efficiënter
is in het selecteren van effectieve parameter verstoringen en dat deze vrijwel geen ver-
storingen trekt die slechts een kleine hoeveelheid klimaatverandering veroorzaken.

Na deze bevindingen in een simpel atmosferisch model, testen we de adjoint me-
thode in een realistischer model, het quasi-geostrofe drie-lagen T21QG model, be-
schreven in hoofdstuk 3. Het T21QG model integreert prognostische vergelijkingen
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voor potentiële vorticiteit. Het bevat verschillende regimes, die kunnen worden geı̈den-
tificeerd met Empirische Orthogonale Functies (EOFs). De eerste EOFs geven de
voorkeurspatronen aan, zoals de NAO (Noord Atlantische Oscillatie) en de PNA (Pa-
cific Noord Atlantische oscillatie). Door het gebruik van deze EOFs kan de dimensie
van de toestandsruimte van een model aanzienlijk worden verkleind. Veranderingen in
het regimegedrag geven veranderingen in het klimaat aan. In deze studie worden alleen
de forceringsparameters verstoord. Opnieuw nemen we aan dat de forceringsparame-
ters 5% onzekerheid bevatten.

We vergelijken de random methode met de adjoint methode ontwikkeld in de con-
text van het Lorenz 63 model, wanneer we deze toepassen op het T21QG model. De
vector die de forceringsparameters bevat heeft een dimensie van 1449 (aantal vrijheids-
graden). Dit aantal is aanzienlijk meer dan in het simpele Lorenz 63 model. Aangezien
het T21QG meer computer tijd vergt, zijn slechts 1000 verschillende model simulaties
per methode haalbaar. Om deze simulaties uit te voeren gebruiken we de high perfor-
mance computer faciliteit van het European Centre for Medium range Weather Fore-
casts (ECMWF), waar het mogelijk is om parallel te rekenen. Eén simulatie vergt
ongeveer 7 uur in echte tijd en we kunnen 32 simulaties tegelijk uitvoeren. De kli-
maatverandering wordt gemeten aan de hand van de eerste paar EOFs. Voor elke inte-
gratiestap wordt de stroomfunctie geprojecteerd op de EOFs. Dit geeft een anomalie
in elke EOF richting. Een tijdreeks van de anomalies kan berekend worden voor elke
EOF. Vervolgens wordt een PDF gemaakt van de tijdreeks van de anomalieën. Een
verandering in de PDF, zoals een verschuiving of een verandering in de vorm, geeft
klimaatverandering aan. Het blijkt dat de parameter verstoringen die de grootste kli-
maatverandering teweeg brengt in termen van de som van absolute veranderingen in
PDF1 tot en met PDF6 ook de grootste verandering veroorzaakt in alleen de eerste
PDF. Dus veranderingen in alleen deze PDF kunnen gebruikt worden als indicator
voor klimaatverandering. Wanneer we de random methode met de adjoint methode
vergelijken, blijkt dat de parameter verstoringen die getrokken worden met de random
methode amper een verandering veroorzaken. De gekozen singuliere vectoren zijn ef-
fectiever in het veranderen van het regime gedrag, 35.7% van de gevonden verstoringen
zijn meer effectief dan alle random verstoringen. Dit betekent ook dat de random me-
thode niet de optimale klimaat verandering benadert. Dit komt door de grote parameter
ruimte, waarin een groot aantal combinaties mogelijk zijn. Het vinden van de meest ef-
fectieve parameter verstoring is misschien nog steeds niet haalbaar in dit model met de
adjoint methode. We laten echter zien dat, ondanks de beperking door de grootte van de
parameter set, de adjoint methode dichterbij het selecteren van de parameter verstoring
die de grootste klimaatverandering veroorzaakt komt, dan de random methode.

In de hoofdstukken 4 en 5 gebruiken we een metapopulatie model, gekoppeld aan
het simpele atmosferische Lorenz 84 model. Het effect van klimaat variabiliteit en
de daarmee samenhangende verandering in ecologische systemen krijgen steeds meer
aandacht. Hier gebruiken we een herbivoor-predator model, wat twee gebieden om-
vat. De intrinsieke groeicoëfficiënten en/of de draagkrachten van de herbivoren zijn
afhankelijk van de klimaatfluctuaties. Vijfde percentielen worden gebruikt om de toe-
stand van de populaties met betrekking tot hun risico van uitsterving aan te tonen. Het
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vijfde percentiel is de drempelwaarde waaronder 5 van de 100 waarden van een lange
tijdreeks worden gevonden. Hoe hoger dit vijfde percentiel, des te lager is het risico
van uitsterving. Een groei in het vijfde percentiel geeft aan dat de condities van de
bijbehorende populatie zijn verbeterd.

In hoofdstuk 4 worden verschillende versies van het model onderzocht. We begin-
nen met het model waar predatoren afwezig zijn en de herbivoren kunnen migreren
tussen de gebieden. De draagkrachten van de herbivoren zijn afhankelijk van de kli-
maatfluctuaties. We gebruiken twee verschillende, ongecorreleerde, tijdreeksen van
het klimaat voor de gebieden. We analyzeren de invloed van de migratiecoëfficiënt.
Het blijkt dat een toenemende migratiecoëfficiënt niet de lokale condities van een soort
verbeterd. De mate van koppeling tussen de twee gebieden beı̈nvloedt echter wel de
snelheid van rekolonisatie in het geval van een volledige lokale uitsterving. Vervol-
gens worden predatoren toegevoegd aan het model. Tevens worden dezelfde klimaat-
tijdreeksen gebruikt in de verschillende gebieden en de intrinsieke groeicoëfficiënten
van de herbivoren zijn afhankelijk van het klimaat. Het doel is om de condities van
de meest kwetsbare herbivoor subpopulatie te verbeteren door de migratiecoëfficiënt
van de herbivoren en/of de sterftecoëfficiënt van de predatoren te vergroten. Voor de
door ons gevonden optimale oplossing sterft de predator in één gebied uit. Als laatste
wordt het model aangepast door ook migratie tussen de predatoren toe te laten. Een
toename in de migratie mate tussen de predatoren, v, heeft een negatief effect op de
herbivoren voor kleine waarden van v. Het hangt af van de waarde van v in welk ge-
bied de grootste verbetering in condities voor de herbivoren optreedt. Toename van
de sterftecoëfficiënten van de predatoren heeft weinig of geen effect op de herbivoren.
Toename van de migratiecoëfficiënt van de herbivoren heeft een positief effect op de
herbivoren in het ene gebied maar een negatief effect op de herbivoren in het andere
gebied. Het blijkt dat algemene regels moeilijk op te stellen zijn. Het type keuzes die
gemaakt moeten worden hangen af van de populatiegroep die versterkt moet worden.
Veranderingen ten gunste van een bepaalde populatie, kunnen onvoorziene negatieve
gevolgen hebben voor andere populaties, met als extreem uitsterving.

In hoofdstuk 5 wordt de tweede variant van het model gebruikt, dus alleen de herbi-
voren kunnen migreren tussen de gebieden en hun intrinsieke groeicoëfficiënten wor-
den beı̈nvloed door het klimaat. We nemen een set van vijf parameters in acht die
verstoord kunnen worden: de intrinsieke groeicoëfficiënten, de sterftecoëfficiënten van
de predatoren en de migratiecoëfficiënt. De adjoint methode, zoals deze is gebruikt in
atmosferische modellen in hoofdstukken 2 en 3, wordt nu getest in dit metapopulatie
model. We willen de ecologische parameter verstoringen vinden die het uitstervings-
risico voor de herbivoren zoveel mogelijk zal verminderen. Het blijkt dat de gese-
lecteerde singuliere vectoren de condities voor beide herbivoren verbeteren. Tevens kan
er voor gekozen worden ook de parameters in het drijvende klimaat model te verstoren.
Op deze manier zou bijvoorbeeld het effect van klimaatverandering op ecologische sys-
temen kunnen worden geanalyzeerd. De adjoint methode zoals deze is beschreven in
dit proefschrift opent nieuwe mogelijkheden voor natuurbeheer en gevoeligheidstudies
van grootschalige modellen.
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