Seminário

"Inventário Estadual de Gases de Efeito Estufa do Estado de São Paulo: gestão de emissões de GEE, período de 1990 - 2008"

17/03/2009

Estimativa da emissão de gases de efeito estufa por veículos automotores leves

Vanderlei Borsari

O ATUAL CONTROLE DAS EMISSÕES VEICULARES

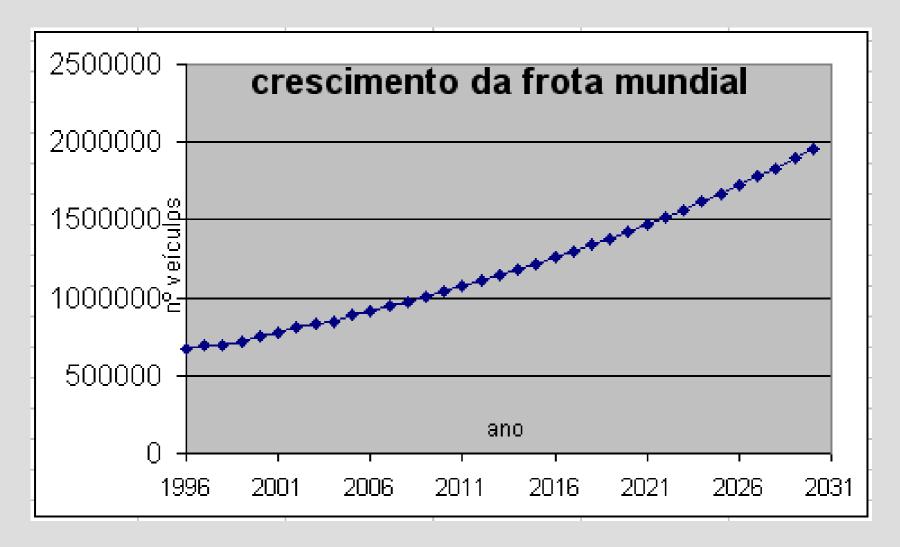
Proconve – Limites de emissão de gases de escapamento para veículos leves nacionais

PROCONVE — limites máximos de emissão					
0.00	Gases de escapamento				Evaporativa
Ano	co	HC	NOx	Aldeídos	
	g/km	g/km	g/km	g/km	g/ensaio
1988	24	2.1	2.0	-	6,0
1992	12	1.2	1.4	0.15	6,0
1997	2.0	0.3	0.6	0.03	6,0
2007	2.0	0.16*	0.25	0.03	2,0
2009	2.0	0.05*	0.12	0.02	2,0

Fonte: CETESB, 2005 (adaptado)

Crescimento da frota mundial de veículos:

1900: 4.192


1968: 46.614.342

1985: 375.000.000

1997: 600.000.000

2030: 1.200.000.000 (estimativa de 1997)

Fonte: http://hypertextbook.com/facts/2001

2006: 953.927.000 veículos

Fonte: Anfavea, 2008. Dados até 2006.

2007 a 2030: estimativa baseada na mesma taxa de

crescimento

Classificação dos poluentes

Poluentes regulamentados: CO, SO_x, NO_x, HC, O₃, MP, etc.

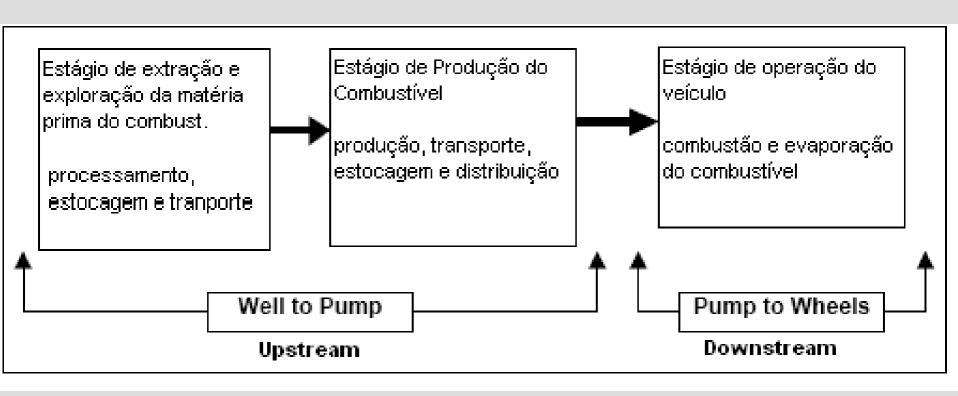
Gases de efeito estufa (Quioto): CO₂, CH₄, N₂O, HFC's, PFC's, SF₆.

Gases de efeito estufa emitidos por veículos:

- CO₂, CH₄ e N₂O emitidos por veículos utilizando gasool (mistura de gasolina e etanol), etanol e GNV (gás natural veicular),
- Emissão fugitiva de CH₄ por veículos movidos a GNV.

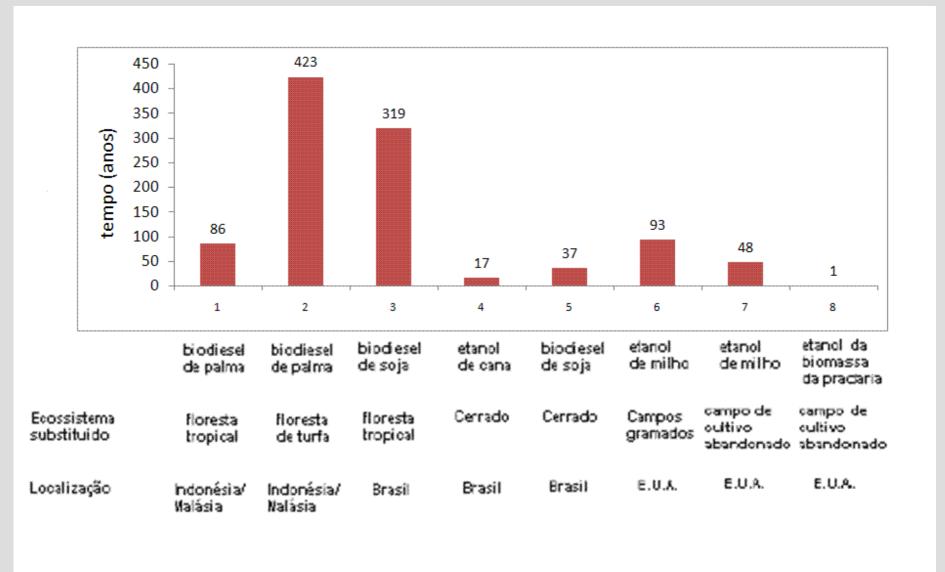
Em uma análise mais completa, as emissões diretas de GEE por veículos automotores incluem também:

a- gases refrigerantes - ar condicionado dos veículos;


b- CO₂ adicional devido a operação do sistema de ar condicionado dos veículos;

c- emissão indireta de ozônio - reação fotoquímica de NO_x, CO e compostos orgânicos voláteis (COV´s);

d- a emissão de poluentes - impacto na concentração OH alteração níveis de CH₄. Também chamados de GEE indiretos (MOTALLEBI et al, 2007).



Atividades cobertas na análise das emissões veiculares pelo ciclo de vida do combustível

Fonte: EPA, 1997(adaptado)

Tempo necessário para anular o débito de carbono na produção de biocombustíveis

Fonte: Fargione et al, 2008 (adaptado)

Segundo SERCHINGER et al, (2008), - etanol brasileiro de cana de açúcar:

- Terra já preparada p/outros cultivos: emissão compensada em 4 anos;
- Derrubada de florestas: compensação em 45 anos;

De acordo com RIGHELATO e SPRACKLEN (2007), -substituir 10% da gasolina e do diesel no mundo: 43% e 38% das áreas cultivadas nos Estados Unidos e na Europa, respectivamente.

- melhoria da eficiência no uso de combustíveis fósseis,
- conservar as áreas existentes de florestas e savanas
- recuperar áreas de cultivo abandonadas, com a sua vegetação nativa

Aquecimento devido à geração de N₂O em relação ao crédito de CO₂ fóssil (Meq/M), por tipo de cultura de biocombustíveis.

Cultura	Aquecimento relativo	Tipo de	
	(Meq/M)	biocombustível	
		produzido	
Colza	1,0 - 1,7	biodiesel	
Milho	0,9 - 1,5	bioetanol	
Cana de açúcar	0,5 – 0,9	bioetanol	

Fonte: Crutzen et al, 2008 (adaptado)

Estimativa das emissões:

Métodos: IPCC: "top-down" p/ CO₂,

"bottom-up" p/ CH₄ e N₂O.

Relatório da Qualidade do Ar - Cetesb

CO₂: A Cetesb publica anualmente, desde 2002, fatores médios de emissão de CO₂ em g/km e autonomia em km/L e g/L, para veículos novos.

Fatores de emissão para CH₄ e N₂O:

CH₄: 1º inventário brasileiro (2002) utilizou fatores baseados na relação CH₄/NMHC do IPCC de 1997.

IPCC(2006) traz novas relações entre CH₄ e HC:

- -veículos a gasolina: 10 a 25%
- -veículos a GNV: 88,0 a 95,2%
- -veículos a gasool 22: 24,3 a 25,5%
- -veículos a AEHC: 26,0 a 27,2%

N₂O: 1º inventário brasileiro (2002) utilizou fator do IPCC p/ veículos europeus a gasolina: 0,005g/km.

IPCC(2006):

veículos com catalisadores 3 vias: 0,009 g/km veículos com catalisadores de oxidação: 0,020 g/km veículos sem catalisadores: 0,008 g/km

EPA(2004): veículos a gasolina

com catalisador: 0,026 g/km

sem catalisador: 0,011 g/km

Laboratório de Veículos da Cetesb

Considerações:

- Embora o principal gás do efeito estufa emitido diretamente por automóveis seja sem dúvida o CO₂, os gases CH₄ e N₂O podem contribuir de maneira significativa para a emissão total de GEE e por isso não podem ser desprezados
- Há, no entanto, uma série de incertezas associadas às medições desses gases e uma escassez de estudos desenvolvidos nesse campo, tornando necessária a ampliação de pesquisas na área.
- Embora a emissão de GEE por veículos seja apenas uma fração do total de emissão global, sabemos que o aumento da frota mundial de veículos pode tornar essa fonte de emissão cada vez mais significativa
- Quando da quantificação dessas emissões deve-se levar em conta o ciclo de vida de cada combustível.

Obrigado

Vanderlei Borsari Cetesb

vanderleib@cetesbnet.sp.gov.br