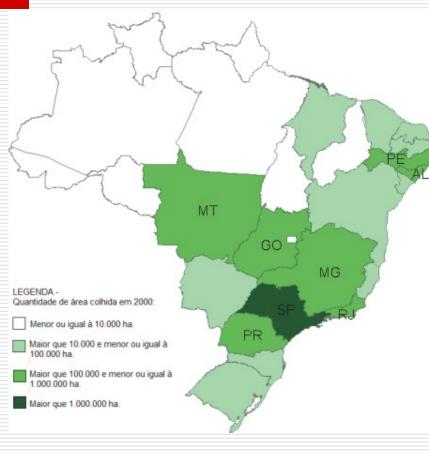
# 3a. Reunião de Coordenação do Inventário Estadual de Emissão de Gases de Efeito Estufa no Setor Agropecuário

# Magda Lima - Embrapa Meio Ambiente CETESB

05/02/2010 - São Paulo, SP






# Atividades do setor agropecuário & Tiers utilizados

| Atividade                               | Gases<br>estimados     | 1996- IPCC | 2006- IPCC | Tier                                                         |
|-----------------------------------------|------------------------|------------|------------|--------------------------------------------------------------|
| Cultivo de arroz irrigado por inundação | CH4                    | X          | X          | 2                                                            |
| Queima de resíduos agrícolas            | CO, CH4 , N2O e<br>NOx | X          | X          | 1/2                                                          |
| Fermentação entérica                    | CH4                    | x          |            | 2 para bovinos e<br>suínos<br>1 para as demais<br>categorias |
| Dejetos animais                         | CH4, N2O               | X          |            | 2 para bovinos e<br>suínos<br>1 para as demais<br>categorias |
| Solos Agrícolas                         | N2O                    | X          | x          | 1                                                            |





## Queima de resíduos agrícolas



## Queima de resíduos agrícolas



Estimativas de biomassa seca, biomassa fresca e relação produção de palhiço/produção de colmos estimadas para as principais variedades de cana-de-açúcar plantadas no Estado de SP- 2000

| Variedade   | Estágio do   | Produção de       | Produção de        | Produção          | Área plantada em              |
|-------------|--------------|-------------------|--------------------|-------------------|-------------------------------|
|             | corte        | palhiço           | colmos             | palhiço/          | São Paulo, no ano             |
|             |              | (Biomassa seca,   | (Biomassa fresca,  | Produção          | 2000                          |
|             |              | t/ha)             | t/ha)              | colmos (%)        | (%)                           |
| SP 70-1143  | -            | 11,7 <sup>a</sup> | 73,6 <sup>a</sup>  | 15,9 <sup>a</sup> | 5,8 <sup>b</sup>              |
| SP 70-1143  | <del>-</del> | 24,0 <sup>c</sup> | 121,0 <sup>c</sup> | 19,8 <sup>c</sup> | _                             |
| SP 71-1406  | <del>-</del> | 22,3 <sup>d</sup> | 73,67 <sup>d</sup> | 30,2 <sup>d</sup> | 0,3 <sup>b</sup>              |
| NA 56-79    | -            | 13,7 <sup>d</sup> | 67,2 <sup>d</sup>  | 20,3 <sup>d</sup> | <u>-</u>                      |
| SP 71-6163  | -            | 23,9 <sup>d</sup> | 108,0 <sup>d</sup> | 22,2 <sup>d</sup> | 0,6 <sup>b</sup>              |
| SP 71-6163  | -            | 18,4 <sup>d</sup> | 95,1 <sup>d</sup>  | 19,4 <sup>d</sup> | -                             |
| SP 71-6163  | -            | 17,0 <sup>d</sup> | 82,5 <sup>d</sup>  | 20,6 <sup>d</sup> | -                             |
| SP 71-1406  | -            | 23,3 <sup>d</sup> | 136,6 <sup>d</sup> | 17,0°             | -                             |
| SP 71-1406  | -            | 9,5 <sup>d</sup>  | 68,6 <sup>d</sup>  | 13,8 <sup>d</sup> |                               |
| SP 79-1011  | Cana planta  | 17,8 <sup>e</sup> | 120 <sup>e</sup>   | 14,8 <sup>e</sup> | 8,6 <sup>b</sup>              |
| SP 79-1011  | 2º. Corte    | 15,0 <sup>e</sup> | 92 <sup>e</sup>    | 16,3 <sup>e</sup> |                               |
| SP 79-1011  | 4º. Corte    | 13,7 <sup>e</sup> | 84 <sup>e</sup>    | 16,3 <sup>e</sup> |                               |
| SP 80-1842  | Cana planta  | 14,6 <sup>e</sup> | 136 <sup>e</sup>   | 10,7 <sup>e</sup> | 0,8 <sup>b</sup>              |
| SP 80-1842  | 2º. Corte    | 12,6 <sup>e</sup> | 101 <sup>e</sup>   | 12,5 <sup>e</sup> |                               |
| SP 80-1842  | 4º. Corte    | 10,5 <sup>e</sup> | 92 <sup>e</sup>    | 11,4 <sup>e</sup> |                               |
| RB 72454    | Cana planta  | 17,2 <sup>e</sup> | 134 <sup>e</sup>   | 12,8 <sup>e</sup> | 18,4 <sup>b</sup>             |
| RB 72454    | 1º. Corte    | 14,9 <sup>e</sup> | 100 <sup>e</sup>   | 14,9 <sup>e</sup> |                               |
| RB 72454    | 5º. Corte    | 13,6 <sup>e</sup> | 78 <sup>e</sup>    | 17,4 <sup>e</sup> |                               |
| SP 83- 2847 | 5º. Corte    | 17,4 <sup>†</sup> | 102 <sup>t</sup>   | 17 <sup>†</sup>   | 0,3 <sup>b</sup>              |
| SP 80-1816  | Média de 5   | 13,4              | 90                 | 14,8              | 10,8 <sup>d</sup> (SP 80 + RB |
| RB 82-5486  | cortes e em  |                   |                    |                   | 85 + RB 83)                   |
| RB 83-5486  | dois solos   |                   |                    |                   |                               |
| RB 85- 5453 |              |                   |                    |                   |                               |
| Média       |              | $17,2 \pm 4,7$    | 96,7 ± 21,8        | 17,2 ± 4,7        |                               |







Evolução da área de cana-de-açúcar colhida mecanicamente no Estado de São Paulo, para o período de 1996 a 2007

| Ano  | % de área colhida | Referência (Fonte)          |
|------|-------------------|-----------------------------|
|      | mecanicamente     |                             |
| 1996 | 10                | Silva (1997)                |
| 1997 | 17,8              | IDEA NEWS (2002)            |
| 1998 | 20                | Estimado                    |
| 1999 | 22,3              | IDEA NEWS (2002)            |
| 2000 | 30,5              | IDEA NEWS (2002)            |
| 2001 | 29                | Estimado                    |
| 2002 | 28                | Estimado                    |
| 2003 | 26                | Kitayama (2008)             |
| 2004 | 28                | Kitayama (2008)             |
| 2005 |                   | Kitayama (2008)             |
| 2006 |                   | Kitayama (2008)             |
| 2007 |                   | CONAB (comunicação pessoal) |



#### Atividades em andamento

#### Arroz irrigado por inundação

 Estabelecimento de parceria com a CATI para o cruzamento de informações agrícolas do Estado de São Paulo - LUPA 1996/1997 e LUPA 2007/2008 - CATI/ IEA

#### **Pecuária**

- Revisão bibliográfica e consulta a pesquisadores sobre parâmetros zootécnicos
- Utilização de dados do Censo Agropecuário IBGE 2006 (dados derivados do cruzamento de dados do censo foram obtidos junto à equipe do IBGE, por exemplo, número de animais confinados, fração de sistemas de manejo de dejetos animais, fertilizantes agrícolas, etc.)

#### Solos agrícolas

 Levantamento de dados sobre uso de solos agrícolas e integração com a equipe da Embrapa Agrobiologia.



# Arroz irrigado por inundação – Método IPCC 1996

- □ Dados do IBGE diferem do LUPA-IEA (1996/1997 e 2007/2008), aos níveis municipal e estadual
- LUPA: divide em 1) área de arroz irrigado e 2) área de sequeiro + várzeas
- Dados do IBGE dispões de dados de áreas totais de cultivo de arroz - utilizamos os dados base de dados da Embrapa Arroz e Feijão



## Estimativa de emissão de CH4 proveniente do cultivo de arroz inundado

- Método IPCC (1996)

A estimativa baseia-se na equação:

#### Equação 1:

 $Fc = EF * A * 10^{-12}$ 

#### Onde:

- □ Fc = emissão anual de metano proveniente de um regime de água específico de cultivo de arroz e para uma determinada adição orgânica, em Tg por ano;
- □ EF = fator de emissão de metano durante a estação integrada de cultivo, em g/m2;
- A = Área colhida anual de arroz sob as condições definidas acima. É dada pela área cultivada vezes o número de estações de cultivo por ano, em m2/ano.



# Cálculo das emissões - IPCC (1996)

O total das emissões anuais de metano é calculado como a soma das emissões ocorridas em diferentes condições de cultivo de arroz no país.

#### Equação 2:

$$F = \sum_{i} \sum_{j} \sum_{k} EFijk * 10^{-12}$$

#### Onde:

 ijk são categorias sob as quais as emissões de metano provenientes de campos de arroz inundado podem variar.



#### Arroz irrigado por inundação – método IPCC 2006

Equação 5.1 (IPCC, 2006)  

$$CH_{4 \text{ arroz}} = \Sigma_{i,j,k} (FE_{i,j,k} \cdot t_{i,j,k} \cdot A_{i,j,k} \cdot 10^{-6})$$

#### Onde:

- CH4 arroz = emissão anual de metano para a cultura de arroz, Gg CH4 ano-1
- □ FEi,j,k = fator de emissão diária para i, j e k condições, kg CH4 ha-1dia-1
- □ ti,j,k = período de cultivo de arroz para i, j e k condições, dias
- ☐ Ai,j,k = área colhida anual de arroz para i, j e k condições, ha ano-1
- i j e k = representam diferentes ecossistemas, regimes de água, tipos e quantidade de incrementos orgânicos, e outras condições em que as emissões de CH4 para arroz podem variar.



# Fatores de escala utilizados para a estimativa de emissão de metano em cultivo de arroz irrigado – IPCC (2006)

$$EF_i = EF_c * SF_w * SF_o * SF_{s,r}$$

- Onde:
- □ EFi= fator de emissão diária ajustado para uma particular área colhida
- □ EFc = fator de emissão linha de base para campos de arroz continuamente inundados sem adição de matéria orgânica (Tabela 5.11 do IPCC)
- SFw = Fator de escala para considerar as diferenças no regime de água durante o período de cultivo (Tabela 5.12 do IPCC)
- □ SFp = Fator de escala para considerar as diferenças no regime da água na préestação antes do período de cultivo (Tabela 5.13 do IPCC)
- □ SFo = Fator de escala deve variar para o tipo e quantidade de material orgânico adicionado ao solo (Equação 5.3 e Tabela 5.14 do IPCC)
- ☐ SFsr = Fator de escala para tipo de solo, cultivar de arroz, etc., se disponível



## Características do cultivo no Estado de SP

- Regime de água : contínuo (várzea úmida) região do Vale do Paraíba e Vale do Ribeira
- Uso de fertilizantes nitrogenados (uréia principalmente)
- Cultivo: convencional

Desenvolvimento de fatores de emissão de CH<sub>4</sub> em cultivo de arroz irrigado por inundação – experimentos realizados em Pindamonhangaba e Tremembé, SP

**Embrapa** 





# Fatores de emissão de CH<sub>4</sub> em cultivo de arroz irrigado por inundação – experimentos realizados em Pindamonhangaba, SP

| Área de estudo      | Sistema de manejo                           | Emissões sazonais de metano (g/m²) |                |                 | no (g/m²) |
|---------------------|---------------------------------------------|------------------------------------|----------------|-----------------|-----------|
|                     |                                             | Safra                              |                |                 |           |
| Sudeste             |                                             | 2002/2003                          | 2003/2004      | 2004/2005       | Média     |
| Pindamonhangaba, SP | Plantio<br>convencional, regime<br>contínuo | 32,84 ±<br>0,24                    | 8,92 ±<br>1,05 | 18,91±<br>2,38  |           |
| Pindamonhangaba, SP | Plantio convencional, regime intermitente   | 36,00 ±<br>10,65                   | 5,68 ±<br>2,12 | 16,20 ±<br>2,54 |           |
| Sul                 |                                             |                                    |                |                 |           |
| Cachoeirinha, RS    | PC - Plantio convencional                   | 49                                 | 59             | 13,2*           |           |
| Cachoeirinha, RS    | PD - Plantio direto                         | 33                                 | 55             | -               |           |
| Cachoeirinha, RS    | CM - Cultivo mínimo                         | -                                  | -              | 4,7*            |           |
|                     |                                             |                                    |                |                 |           |



## Pecuária

| 0 | Níveis de detalhamento das estimativas do IPCC (1996)                                                                                                                                                                                                                         |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Tier 1:                                                                                                                                                                                                                                                                       |
|   | Caracterização básica para populações animais: valores default                                                                                                                                                                                                                |
|   | A ser utilizado para todas as categorias animais, com exceção de bovinos, suinos e aves                                                                                                                                                                                       |
|   | Tier 2 (para bovinos e suinos)                                                                                                                                                                                                                                                |
|   | Caracterização das populações animais, com informações mais detalhadas sobre estimativas de consumo de alimento para animais típicos em cada subcategoria, bem como sobre a qualidade da dieta, produtividade animal, digestibilidade, taxa de prenhez, entre outros fatores. |

Uso de taxas de excreção de N para categorias animais



#### Sistemas de manejo de dejetos por tipo de animal (IPCC-1996)

#### Sistemas de Manejo considerados:

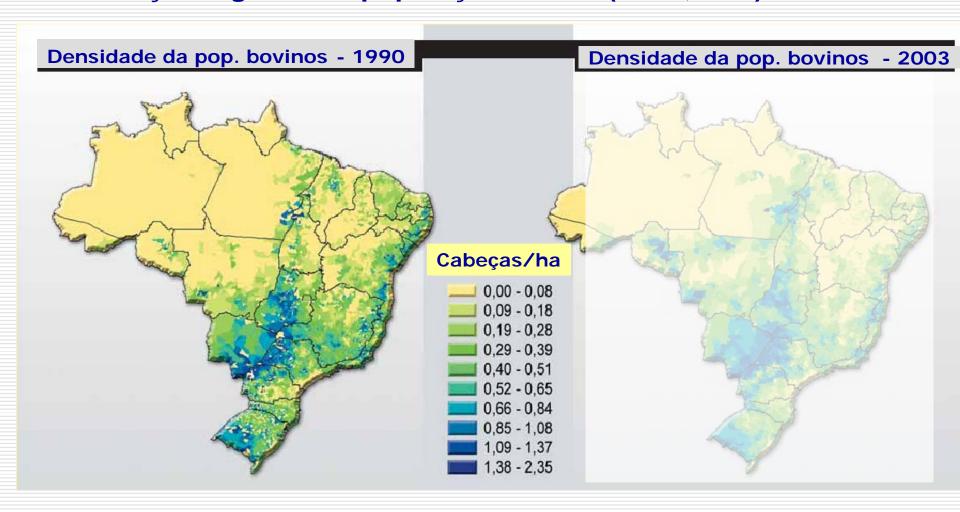
Pastagem (para bovinos)

Estocagem sólida / Compostagem

Sistema líquido

Lagoa anaeróbica

Aplicação de fertilizantes nos solos (daily spread)


**Esterqueiras (para suinos)** 

**Biodigestores** 

**Outros sistemas** 



## Distribuição regional da população bovina (IBGE,2003)



# **Em**orapa

Desenvolvimento de fatores de emissão de metano (CH<sub>4</sub>) por fermentação entérica para gado bovino de corte Nelore no Estado de São Paulo



Estudo coordenado pela Embrapa Meio Ambiente em parceria com APTA – Nova Odessa, SP

Convênio: U.S.EPA e MCT (Programa Mudanças

Climáticas)



# **Em**bra**pa**

# Emissões de metano por gado de corte – Nelore – resultados de mensuração e estimativas obtidas em SP

| Category                   | Weight | % of<br>total<br>herd |        | CH <sub>4</sub> g/d* |        |      | CH <sub>4</sub> kg/animal<br>year |
|----------------------------|--------|-----------------------|--------|----------------------|--------|------|-----------------------------------|
|                            |        |                       | Winter | Spring               | Summer | Fall |                                   |
| Bulls                      |        |                       |        |                      |        |      |                                   |
| Cows                       |        |                       |        |                      |        |      |                                   |
| Heifers (7 months to 2 y.) |        |                       |        |                      |        |      |                                   |
| Heifers (2-3 years)        |        |                       |        |                      |        |      |                                   |
| Males (7 months to 2 y.)   |        |                       |        |                      |        |      |                                   |
| Males (2-3 years)          |        |                       |        |                      |        |      |                                   |
| Males (3-4 years)          |        |                       |        |                      |        |      |                                   |
| Males (4 years )           |        |                       |        |                      |        |      |                                   |

Faltam dados das sub-categorias das populações de bovinos no Estado.

Mean

Correlação a ser obtida entre as populações e a dieta (embora existam dados de áreas de gramíneas e outros parâmetros no LUPA).





## Fatores de Emissão para Gado de Corte (IPCC, 2006)

| <u> </u> |        |          |      |
|----------|--------|----------|------|
| 1-20     | $\sim$ | $\alpha$ | OPTO |
| Jac      | IU (   | ィモーし     | orte |

América do Norte
Europa Ocidental
Europa Oriental
Oceania
América Latina
Asia
África
India subcontinental

#### kg CH<sub>4</sub> / year/ head

# Desenvolvimento de fatores de emissão de metano (CH4) por fermentação entérica para gado bovino leiteiro (Holstein e mestiças) no Estado de São Paulo



Estudo coordenado pela Embrapa Meio Ambiente em parceria com a Embrapa Pecuária Sudeste (São Carlos, SP)

Convênios: FINEP (Projeto REDUGAS) e U.S.EPA





# Fatores de emissão de metano para gado de leite (mestiço *Zebu*) sob condições tropicais (Primavesi et al.)

| Category                      | Weight  | % of total dairy herd | CH4 kg/animal<br>year |
|-------------------------------|---------|-----------------------|-----------------------|
| Bulls                         | 550 >   | 1.6                   |                       |
| Cows, lactating               | 350-450 | 29.8                  |                       |
| Cows, dry                     | 400-550 | 14.9                  |                       |
| Heifers (7 months to 2 years) | 180-250 | 13.8                  |                       |
| Heifers (2-3 years)           | 250-351 | 8.9                   |                       |





## Fatores de emissão para gado de leite (IPCC, 2006)

Gado de Leite

kg CH<sub>4</sub> / year/ head

**América do Norte** 

**Europa Ocidental** 

**Europa Oriental** 

**Oceania** 

**América Latina** 

Asia

África

India subcontinental



#### Solos agrícolas – N2O (em conjunto à Embrapa Agrobiologia)

- Levantamento de dados para o Estado de SP
  - Uso de dados de variáveis do Censo Agropecuário 2006, ANDA, etc., LUPA 1995/1996 e de 2007/2008.
  - Revisão de literatura
  - Disponibilidade de dados do LUPA 1996/1997 e 2007/2008
  - Dados de avaliação de emissões de N2O sinalizam para valores inferiores aos dados default do IPCC (fixação biológica de Nitrogênio)
  - Dados de fração de dejetos animais mesmo utilizado na pecuária



# magda@cnpma.embrapa.br

19 – 3311 2645 Jaguariúna, SP