

Evolução das concentrações de Carbono Orgânico e Carbono Elementar no $MP_{2,5}$ na atmosfera de São Paulo (Cerqueira César)

Governo do Estado de São Paulo João Doria - Governador do Estado de São Paulo

Secretaria de Infraestrutura e Meio Ambiente Marcos Penido - Secretário de Estado

CETESB - Companhia Ambiental do Estado de São Paulo Patrícia Iglecias - Diretora-Presidente

CETESB - Companhia Ambiental do Estado de São Paulo

Diretoria de Gestão Corporativa Clayton Paganotto - Diretor

Diretoria de Controle e Licenciamento Ambiental Gláucio Attorre Penna - Diretor

Diretoria de Avaliação de Impacto Ambiental Domenico Tremaroli - Diretor

Diretoria de Engenharia e Qualidade Ambiental Carlos Roberto dos Santos - Diretor

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE INFRAESTRUTURA E MEIO AMBIENTE DO ESTADO DE SÃO PAULO

Evolução das concentrações de Carbono Orgânico e Carbono Elementar no $MP_{2,5}$ na atmosfera de São Paulo (Cerqueira César)

CETESB COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO

Dados Internacionais de Catalogação

(CETESB - Biblioteca, SP, Brasil)

C418e CETESB (São Paulo)

Evolução das concentrações de carbono orgânico e carbono elementar no MP_{2,5} na atmosfera de São Paulo (Cerqueira César) [recurso eletrônico] / CETESB; Elaboração Cristiane F. Fernandes Lopes (Coordenação técnica), Jesuíno Romano; Equipe de trabalho Daniele P.R. de Carvalho ... [et al.]; Colaboração Claudio Darwin Alonso, Yoshio Yanagi. - - São Paulo: CETESB, 2021.

1 arquivo de texto (32 p.): il. color., PDF; 2 MB

Disponível em: https://cetesb.sp.gov.br/ar/publicacoes-relatorios/. ISBN 978-65-5577-017-9

1. Ar – qualidade – controle 2. Ar – poluição 3. Carbono elementar 4. Carbono orgânico 4. Material particulado 5. Partículas inaláveis finas 6. São Paulo (SP) I. Título.

CDD (21.ed. Esp.) 363.739 263 816 1 CDU (2.ed. Port.) 502.175:614.71/.72 (815.6) 614.71:543.632.42 (815.6)

Catalogação na fonte: Margot Terada - CRB 8.4422

Direitos reservados de distribuição e comercialização. Permitida a reprodução desde que citada a fonte.

© CETESB 2021. Av. Prof. Frederico Hermann Jr., 345 Pinheiros – SP – Brasil – CEP 05459900

Ficha Técnica

Diretoria de Engenharia e Qualidade Ambiental

Carlos Roberto dos Santos

Departamento de Qualidade Ambiental

Maria Helena R. B. Martins

Divisão de Qualidade do Ar

Maria Lúcia Gonçalves Guardani

Setor de Amostragem e Análise do Ar

Cristiane F. Fernandes Lopes

Elaboração

Cristiane F. Fernandes Lopes (**Coordenação Técnica**) Jesuíno Romano

Equipe de Trabalho

Daniele P. R. de Carvalho Giacomo C. Grizzo Cuoco Graziela Mônaco Locchi Jesuíno Romano Maria Cristina N. de Oliveira Nelson Álamo Filho Sheila de Castro Viviane A. de Oliveira Ferreira

Colaboração

Claudio Darwin Alonso Yoshio Yanagi

Capa

Vera Severo

Produção Editorial e Distribuição

CETESB – Companhia Ambiental do Estado de São Paulo Av. Prof. Frederico Hermann Jr., 345 - Alto de Pinheiros São Paulo - SP - Brasil - 05459-900 Telefone: +55 11 3133.3000 http://www.cetesb.sp.gov.br

Resumo

O material carbonáceo em ambientes urbanos e remotos é um dos mais importantes componentes do material particulado com diâmetro aerodinâmico de corte de 2,5 μ m (MP_{2,5}) e está relacionado com o impacto do aerossol na saúde, visibilidade e clima. A fração carbonácea do material particulado consiste em carbono elementar (C.E.) e uma variedade de carbonos orgânicos (C.Org).

Os aerossóis de carbono orgânico formam-se durante a combustão incompleta, que representa a principal fonte primária de emissão. Também podem ser formados por meio de reações fotoquímicas entre compostos orgânicos voláteis e espécies oxidativas na atmosfera e subsequente conversão gáspartícula sendo denominado carbono orgânico secundário.

O carbono elementar tem uma estrutura similar ao grafite e é emitido diretamente para a atmosfera em processos de combustão, desta forma, possui apenas fontes primárias de emissão.

Os teores de carbonos orgânico e elementar, nas partículas inaláveis finas (MP_{2,5}), foram medidos na estação Cerqueira César, pertencente a rede de avaliação da qualidade do ar da CETESB, nos anos de 2009, 2010, 2011, 2012, 2015 e 2016. As amostragens foram realizadas a cada seis dias durante 24 horas.

Foram realizadas análises de evolução das médias anuais, análises utilizando *boxplot*, correlação de dados diários obtidos entre as frações de carbono e com MP_{2,5}, razão entre C.Org e C.E., análise de médias mensais, variações de acordo com as estações do ano e comparação com dados de outras localidades.

Observou-se que as médias anuais de MP_{2,5} apresentaram tendência de queda ao longo dos anos, a partir de 2010, o que não foi observado no caso das concentrações de carbono, que se mantiveram num patamar mais constante. A porcentagem média de C.T., no MP_{2,5}, observada, na estação Cerqueira César, no período monitorado foi de 53% representando praticamente a metade da concentração das partículas inaláveis finas. O comportamento sazonal do C.Org e C.E. é semelhante ao do MP_{2,5}, ou seja, ocorreu um aumento das médias mensais no período do inverno, quando as condições meteorológicas são mais desfavoráveis à dispersão de poluentes primários no município de São Paulo.

O conjunto total dos dados medidos no período de 2009 a 2012 e 2015 e 2016 mostrou correlação moderada entre as concentrações de MP_{2,5} e C.E. e forte correlação entre MP_{2,5} e carbono orgânico. De maneira geral, há uma forte correlação entre C.Org. e C.E., indicando que as fontes de poluição de ambos são similares. Maiores razões C.Org/C.E. foram observadas na primavera, seguida do inverno, outono e as menores razões obtidas no verão.

Os valores de C.Org em São Paulo foram, de maneira geral, da mesma ordem de grandeza dos obtidos em cidades dos EUA e da União Europeia. Os teores de C.E. foram, em geral, maiores que os medidos nessas outras cidades.

Palavras chaves: Partículas Inaláveis Finas, MP_{2,5}, Carbono Orgânico, Carbono Elementar, Poluição do Ar, Qualidade do Ar

Listas de Ilustrações e Tabelas

		_	_
ΝЛ		n	Λ
IVI	м	_	н

Mapa 1 - Mapa do entorno da Estação Cerqueira César13
FIGURA
Figura 1 – Estação Cerqueira César 12
Figura 2 - Analisador Termo-óptico de Carbono14
GRÁFICO
Gráfico 1 – Perfil das concentrações médias anuais de MP _{2,5} , carbono orgânico, carbono elementar e carbono total de 2009 a 2012, 2015 e 2016
Gráfico 2 – Porcentagem de Carbono total no MP _{2,5} 17
Gráfico 3 – Diagrama de distribuição (Boxplot) dos dados de MP _{2,5} , COrg, C.E e C.T18
Gráfico 4 - Correlação de MP _{2,5} em função do C.Org e C.E. no período de estudo
Gráfico 5 – Correlação entre carbono orgânico e elementar - Cerqueira César20
Gráfico 6 - Perfil das médias mensais de MP _{2,5} , C.Org e C.E. no período monitorado 21
Gráfico 7 – Correlação entre carbono orgânico e elementar, em Cerqueira César, por estação do ano considerando todo o período de monitoramento22
TABELA
Tabela 1 - Concentrações médias anuais de MP _{2,5} , carbono orgânico, elementar e total, e relações entre carbono orgânico e elementar, de 2009 a 2012, 2015 e 201616
Tabela 2 - Porcentagem de carbono total (%) no MP _{2,5} 17
Tabela 3 - Coeficientes de correlação de Pearson (r) do MP _{2,5} e frações de carbono19
Tabela 4 - Coeficientes de correlação de Pearson (r)20
Tabela 5 - Razão C.Org./C.E. e o desvio padrão obtido por estação do ano22
Tabela 6 - Concentrações médias de C.Org. C.E. e C.T. obtidas em diferentes locais

Lista de Abreviaturas e Siglas

CETESB Companhia Ambiental do Estado de São Paulo

C. E. carbono elementar C.Org carbono orgânico

COV compostos orgânicos voláteis

C.T. carbono total

HPA Hidrocarbonetos Policíclicos Aromáticos

MP Material Particulado

N número de dias com representação diária dos dados

RMSP Região Metropolitana de São Paulo

Lista de Símbolos

°C graus Celsius

MP_{2,5} partículas inaláveis finas CO₂ dióxido de carbono

CH₄ metano

CuO óxido de cobre

 $\begin{array}{ll} \text{He} & \text{h\'elio} \\ \text{O}_2 & \text{oxig\^enio} \\ \text{\mug} & \text{micrograma} \\ \text{\mum} & \text{micrometro} \end{array}$

μg/m³ micrograma por metro cúbico

L/min litros por minuto mm milímetros

MnO₂ oxido de manganês cm² centímetro quadrado r coeficiente de correlação

Sumário

1 Introdução	11
2 Objetivo	11
3 Toxicidade	11
4 Amostragem e Análise	12
4.1 Coleta de Amostras	12
4.1.1 Local de Amostragem	12
4.1.2. Amostragem	13
4.2. Metodologia de Análise	13
4.2.1. Gravimetria	13
4.2.2. Análise do material carbonáceo do aerossol	14
5 Resultados e Discussão	15
6 Comparação com dados ambientais de outros locais	23
7 Conclusões	24
Referências	25

1 Introdução

O material carbonáceo em ambientes urbanos e remotos é um dos mais importantes componentes do material particulado com diâmetro aerodinâmico de corte de 2,5 μm (MP_{2,5}) e está relacionado com o impacto do aerossol na saúde, visibilidade e clima. A fração carbonácea do material particulado consiste em carbono elementar (C.E.) e uma variedade de carbonos orgânicos (C.Org).

Os aerossóis de carbono orgânico formam-se durante a combustão incompleta, que representa a principal fonte primária de emissão. Também podem ser formados por meio de reações fotoquímicas entre compostos orgânicos voláteis e espécies oxidativas na atmosfera e subsequente conversão gáspartícula sendo denominado carbono orgânico secundário (SAMARA, 2014).

O carbono elementar tem uma estrutura similar ao grafite e é emitido diretamente para a atmosfera em processos de combustão (WANG, 2019), desta forma, possui apenas fontes primárias de emissão.

No primeiro levantamento e estudo do material carbonáceo na Região Metropolitana de São Paulo, realizado pela CETESB, em 1986/87, constatou-se que o material carbonáceo era o principal componente do MP_{2,5} (CETESB, 1988).

2 Objetivo

O objetivo deste estudo é estruturar uma base de dados que permita identificar possíveis alterações nas relações entre carbono orgânico e elementar na fração fina do material particulado (MP2,5), bem como a evolução das concentrações de material carbonáceo. Também verificar se a alteração dos teores de carbono nos particulados resultaram em alterações das concentrações totais de MP2,5. Tais informações são valiosas para que se identifique sua relação com a mudança do perfil das fontes, tais como tipo de combustível, reformulação dos combustíveis, idade da frota, número de veículos, presença de dispositivos para redução das emissões nos sistemas de exaustão, etc.

3 Toxicidade

A determinação do teor de material carbonáceo nas partículas inaláveis é importante do ponto de vista toxicológico. Em áreas urbanas, o carbono elementar é emitido principalmente por veículos a diesel (ESTADOS UNIDOS, 2002). A capacidade de adsorção destas partículas pode contribuir para que gases tóxicos a elas associados sejam levados aos pulmões, podendo, ainda, atuar como catalisador na conversão de gases a aerossóis (WHO, 2005). Além do risco de câncer decorrente destas emissões, estudos recentes sugerem que a exposição à fumaça de diesel pode agravar a reação do corpo a alergenos comuns, provocando um aumento significativo na resposta imunológica (SILVERMAN, 2018).

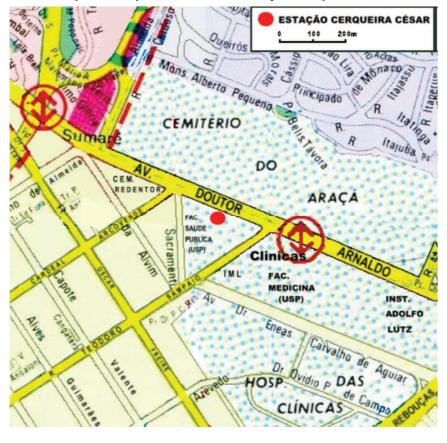
De maneira geral, os perfis de emissão de compostos orgânicos gasosos são diferentes para veículos a diesel e veículos do ciclo Otto (ignição por centelhamento). Os do ciclo Otto emitem mais hidrocarbonetos policíclicos aromáticos (HPAs) e alcanos de baixo peso molecular. Os alcanos mais pesados (>C10) e os HPAs de elevado peso molecular são mais característicos das emissões de veículos a diesel. Alguns destes compostos que ficam adsorvidos no material particulado são carcinogênicos, a exemplo de alguns HPAs (ESTADOS UNIDOS, 2002).

4 Amostragem e Análise

4.1 Coleta de Amostras

4.1.1 Local de Amostragem

As amostras foram coletadas no Bairro Cerqueira Cesar, na Faculdade de Saúde Pública, localizada na Av. Dr. Arnaldo, 725, a 7 metros desta avenida. Os equipamentos foram colocados na estação de avaliação da qualidade do ar da CETESB (**Figura 1**).


Figura 1 – Estação Cerqueira César

Nas proximidades da estação não existem fontes fixas com potencial de emissão representativo, uma vez que a região é estritamente urbano-residencial. Por ser uma região com restrições impostas pela lei de zoneamento municipal, nessa área são encontradas apenas pequenas fontes estacionárias tais como: postos de abastecimento de combustíveis e fornos de restaurantes, padarias e pizzarias. Grande parte da área ao redor da estação é ocupada pelos cemitérios do Araçá e Redentor, pela Faculdade de Saúde Pública e pelo Complexo do Hospital das Clínicas.

As fontes móveis mais importantes no entorno da estação concentram-se em poucas vias de tráfego. A avenida mais próxima, e fonte linear de emissão a causar impacto nessa área de avaliação, é a Av. Dr. Arnaldo, que se estende de noroeste a sudeste, passando em frente da estação, sendo o corredor de tráfego entre a região do Sumaré e as avenidas Paulista, Rebouças e Rua da Consolação. Duas outras vias têm contribuição significativa na emissão de poluentes, a Rua Teodoro Sampaio que liga a região de Pinheiros à Av. Dr. Arnaldo e a Rua Cardeal Arcoverde, no fluxo contrário, liga a Av. Dr. Arnaldo à região de Pinheiros (MAPA 1). Essas fontes são consideradas lineares e as mais importantes na região em estudo (CETESB, 2004).

Devido às características locais com vias de tráfego consideradas saturadas nas horas de pico e sem alterações significas em termos de uso do solo ao longo do tempo, os níveis de concentração dos poluentes variam, sobretudo, em função das condições meteorológicas e de mudanças nas fontes veiculares, como renovação da frota, tecnologia de motores e qualidade dos combustíveis.

Mapa 1 - Mapa do entorno da Estação Cerqueira César

4.1.2. Amostragem

As amostragens de MP_{2,5} ocorreram nos anos de 2009 a 2016, com exceção de 2013 e 2014. A altura de captação das amostras foi cerca de 3,5 metros acima do nível do solo. As coletas foram realizadas uma vez a cada 6 dias, durante 24 horas. Em 2009, 2010, 2011, 2012 foram utilizados 2 amostradores dicotômicos da Sierra Andersen, modelo SA241, com cabeça separadora General Metal Works, filtros de teflon® e quartzo de 37 mm de diâmetro, e vazão de 16,7 L/min. Em 2015 e 2016 utilizaram-se amostradores tipo Partisol, da Thermo Scientific, equipados com filtros de teflon® e quartzo, 47 mm de diâmetro, com mesma vazão e tempo de amostragem dos amostradores dicotômicos. Após a coleta, as amostras foram transportadas ao laboratório e armazenadas em geladeira a 4°C.

4.2. Metodologia de Análise

4.2.1. Gravimetria

A massa das partículas coletadas em filtros de teflon® foi determinada por pesagem em microbalança, marca Mettler Toledo, modelo MX 5. Os filtros utilizados foram condicionados para pesagem, antes e depois da amostragem, em câmara com umidade relativa controlada (cerca de 40%), evitando-se assim alterações de umidade que poderiam interferir nas pesagens. As cargas eletrostáticas, outra possível fonte de interferência na operação de pesagem, foram neutralizadas por uma fonte radioativa de amerício (Am-241).

4.2.2. Análise do material carbonáceo do aerossol

4.2.2.1 Analisador Termo Óptico SUNSET

Para a análise das amostras de 2009 a 2012, 2015 e 2016, foi utilizado o analisador termo óptico Sunset, operando com protocolo de análise IMPROVE.

Para determinação dos teores de carbono, o filtro é retirado da geladeira e mantido na sala de análise para equilíbrio com a temperatura ambiente (22°C). Na primeira etapa, uma fração de 1,0 cm² ou 1,5 cm² do filtro é introduzida no forno da amostra, sob um fluxo de hélio puro (isento de O₂), e submetida a 4 etapas crescentes de temperatura (140°C, 280°C, 480°C e 580°C). Nessa fase, todo o carbono orgânico (C.Org), e os carbonatos, se presentes, são volatilizados e removidos do filtro. Ainda nessa primeira fase, a conversão pirolítica do C.Org é monitorada durante toda a análise através da transmitância de luz laser. Os C.Orgs vaporizados em cada temperatura da primeira fase são imediatamente oxidados a dióxido de carbono no forno de oxidação contendo MnO₂. Um fluxo de gás He com o CO₂ oxidado é conduzido ao metanizador, que reduz o CO₂ para CH₄, que em seguida alcança o detector de ionização de chama.

Na segunda fase, o forno é mantido a 580°C, o He puro no forno é substituído por uma mistura de 2% de O_2 em He e a amostra é aquecida novamente em 2 etapas (740°C e 840°C). Durante essa fase, tanto o Carbono Elementar (C.E.) originalmente presente na amostra, como o produzido piroliticamente, são analisados. O carbono liberado da amostra na segunda etapa da análise é oxidado a CO_2 , pela presença de O_2 , e como na primeira fase é transformado em CH_4 e medido no detector de ionização de chama.

Com o intuito de corrigir o erro produzido pela pirólise de C.Org, na primeira parte da análise, o escurecimento do filtro é monitorado através da transmitância de luz laser. O monitoramento da luz transmitida através do filtro permite separar o C.E. gerado piroliticamente do existente originalmente na amostra. O momento da análise em que o valor do laser iguala o sinal inicial é o ponto de separação entre o C.E. e o C.E. originado da pirólise.

Após a evolução de todo o carbono da amostra, é injetado um volume conhecido de mistura de gás padrão com 5% de metano em He. Com base na resposta do detector de ionização de chama e na transmissão do laser, as quantidades de C.Org e C.E. são determinadas (KARANASIOU, 2015).

A Figura 2 ilustra o funcionamento do analisador Sunset Laboratory.

He/CH₄

He/CH₄

Fotodiodo

Sensor de Temp.

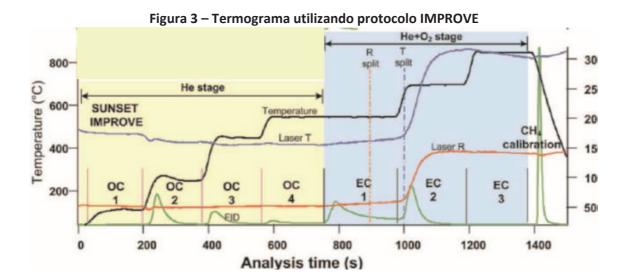
Saída

V

He

Forno/amostra

Forno de oxidação


He/O₂

Laser

Sensor de Pressão

Figura 2 - Analisador Termo-óptico de Carbono

A Figura 3 mostra o termograma de uma amostra de MP_{2.5}, usando o protocolo IMPROVE.

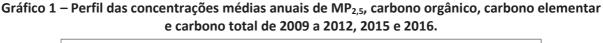
4.2.2.2 Analisador de Carbono DHORMANN

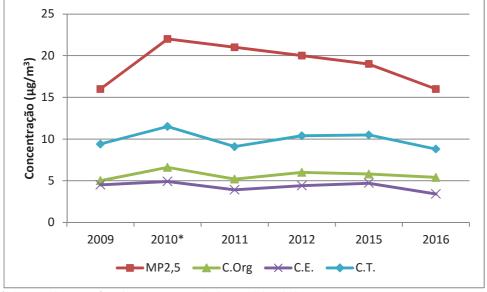
A determinação dos teores de carbono das amostras de material particulado coletadas na década de 1980 consistiu na introdução de uma fração do filtro em um forno sob um fluxo de argônio com 2% de oxigênio, a 450°C, para a determinação de carbono orgânico, e a 700°C, para carbono elementar. A total oxidação do material carbonáceo é garantida pela passagem através de um leito de CuO sólido. O CO₂ gerado passa por um frasco lavador contendo solução de ácido fosfórico, sendo quantificado em um detector infravermelho não dispersivo. O aparelho utilizado para análise foi um Dhorman Carbon Analizer, modelo DC-85, adaptado (CETESB, 2003). Este tipo de analisador não permitia a correção ótica do carbono resultante da carbonização dos compostos orgânicos que ocorre na primeira etapa do analisador Sunset.

5 Resultados e Discussão

Os resultados das análises das amostras coletadas de 2009 a 2012, 2015 e 2016, em Cerqueira César, são avaliados em termos das concentrações médias anuais de MP_{2,5} e de carbono e das relações entre as frações de carbono orgânico, elementar e carbono total (C.T.). Os resultados encontrados na cidade de São Paulo são comparados com as concentrações médias detectadas em outros locais.

Resultados anteriormente obtidos em 1986/87 foram apresentados no relatório "Teores de Material Particulado Carbonáceo na Atmosfera da Grande São Paulo", de junho de 1988 (CETESB, 1988).


Os resultados das concentrações médias anuais de $MP_{2,5}$ e das diferentes frações de material carbonáceo, encontrados no presente estudo, são apresentados na **Tabela 1** e os perfis de concentração, no **Gráfico 1.**



ANO	Nº dados	Concentração (µg/m³)			
ANO Nº dados		MP _{2,5}	C. Org	C.E.	C.T.
2009	40	16	5,0	4,5	9,5
2010*	28	22	6,6	4,9	11,5
2011	37	21	5,2	3,9	9,1
2012	36	20	6,0	4,4	10,4
2015	42	19	5,8	4,7	10,5
2016	33	16	5,4	3,4	8,8

Tabela 1 - Concentrações médias anuais de MP_{2,5}, carbono orgânico, elementar e total, de 2009 a 2012, 2015 e 2016.

^{*}Não atende ao critério de representatividade anual dos dados

^{*}Não atende ao critério de representatividade anual dos dados

Observa-se que as médias anuais de MP_{2,5} apresentaram tendência de queda ao longo dos anos, a partir de 2010, o que não foi observado no caso das concentrações de carbono, que se mantiveram num patamar mais constante.

Em 2016, a concentração de C.Org se manteve no mesmo patamar dos anos anteriores, enquanto a concentração de C.E apresentou ligeira queda, acompanhando a média anual do $MP_{2,5}$, como mostra o **Gráfico 1.** Observa-se uma queda nas concentrações de carbonos no ano de 2011, queda esta não observada no $MP_{2,5}$.

Para comparação das medições aqui apresentadas com as efetuadas na década de 1980 na Região Metropolitana de São Paulo (RMSP), são analisados somente os dados de carbono total, visto que nas análises dos dados de C.Org e C.E. foram utilizados diferentes metodologias de análise. Dados anteriores utilizados nessa comparação restringem-se às estações Parque D. Pedro e Osasco por possuírem características semelhantes com a de Cerqueira César uma vez que se localizam próximas a vias de tráfego.

Na **Tabela 2** e no **Gráfico 2** são apresentadas as porcentagens de carbono total (C.T.) no MP_{2,5} obtidas nesse estudo e em estudos anteriores na RMSP.

Tabela 2 - Porcentagem de carbono total (%) no MP_{2,5}

Local/Ano	Nº dados	MP _{2,5} (μg/m³)	C.T. %
P.D.Pedro/1987	51	49	63
Osasco/1987	56	38	61
C. César/2009	40	16	59
C. César/2010*	30	22	52
C. César/2011	37	21	43
C. César/2012	36	20	52
C. César/2015	43	19	55
C. César /2016	33	16	55

^{*}Não atende ao critério de representatividade anual dos dados

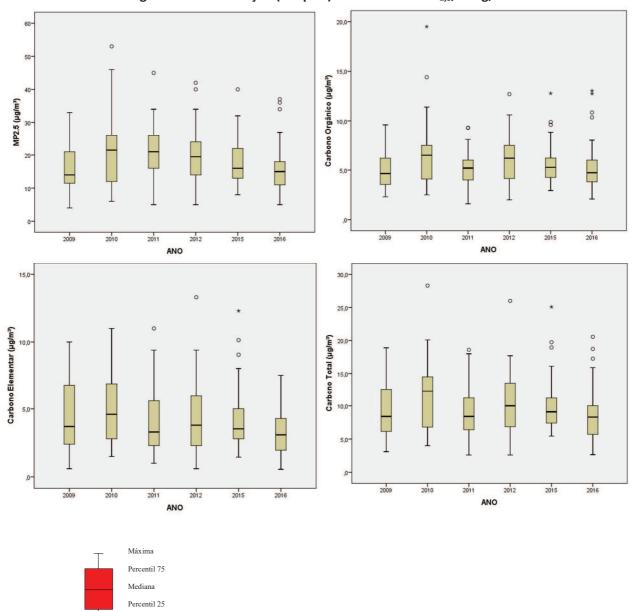
As porcentagens de C.T. no MP_{2,5} no Parque D. Pedro II e em Osasco foram maiores que as obtidas na estação Cerqueira César. Na estação Cerqueira César, a porcentagem média de C.T., no MP_{2,5}, nesse estudo foi de 53% representando praticamente a metade da concentração das partículas inaláveis finas. No entanto ao longo dos anos essa porcentagem apresentou certa variação.

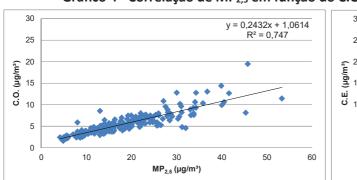
70 60 50 40 (%) C. 30 20 10 0 Parque D. Osasco/ 1987 C. César -C. César -C. César -C. César -C. César -C. César -Pedro/ 1987 2009 2010* 2011 2012 2015 2016

Gráfico 2 – Porcentagem de Carbono total no MP_{2,5}

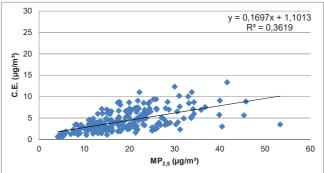
O **Gráfico 3** é um boxplot, diagrama que permite visualizar a distribuição dos dados (mediana, máxima, mínima e percentis 25% e 75%), nele são apresentados os dados de MP_{2,5}, carbono orgânico, elementar e total, medidos em Cerqueira César, por ano de monitoramento.

^{*}Não atende ao critério de representatividade anual dos dados




Gráfico 3 – Diagrama de distribuição (Boxplot) dos dados de MP_{2,5}, COrg, C.E e C.T.

Fonte: CETESB (2021)


Mínima

A identificação das origens do material particulado na atmosfera é uma informação importante para direcionar o controle das suas emissões. A análise dos teores de material carbonáceo em relação ao material particulado auxilia na detecção da contribuição das fontes de combustão na formação do MP_{2,5}. Analisaram-se também as correlações de Pearson (MUKAKA, 2012), obtidas das regressões lineares (**Tabela 3**), com o intuito de facilitar um melhor entendimento do comportamento do MP. O **Gráfico 4**, apresenta a correlação entre os parâmetros MP_{2,5} e as frações de C.Org, C.E. considerando todos os anos de monitoramento. Observa-se que há forte correlação (r=0,86) entre MP_{2,5} e C.Org. Já a correlação obtida entre o MP_{2,5} e carbono elementar foi moderada (r=0,6).

Da mesma forma, as correlações obtidas, por ano de monitoramento, entre $MP_{2,5}$ e C.E., de maneira geral, estão entre fracas e moderadas, exceto os anos de 2009 e 2016, já as correlações entre $MP_{2,5}$ e C.Org mostram-se fortes ou muito fortes.

Tabela 3 - Coeficientes de correlação de Pearson (r) do MP_{2,5} e frações de carbono

Variáveis	Coeficientes de correlação					
variaveis	2009	2010*	2011	2012	2015	2016
MP _{2,5} x C.Org	0,95	0,87	0,87	0,96	0,68	0,97
MP _{2,5} x C.E.	0,81	0,47	0,49	0,64	0,55	0,82

^{*}Não atende ao critério de representatividade anual dos dados

Outra análise importante é a correlação entre o carbono orgânico e elementar. Segundo estudos recentes (WANG, 2019; QI, 2018), a correlação entre C.Org. e C.E. pode contribuir para diferenciar as fontes, se a correlação for significativa pode indicar que as fontes de poluição são similares.

O **Gráfico 5** apresenta a correlação entre carbono orgânico e elementar, em Cerqueira César, para cada ano de monitoramento.

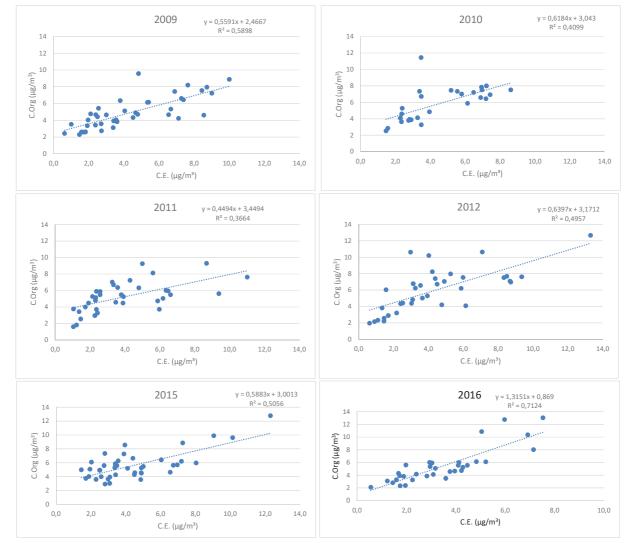


Gráfico 5 – Correlação entre carbono orgânico e elementar - Cerqueira César

Na **Tabela 4**, são apresentados os coeficientes de correlação de Pearson obtidos das correlações de carbono orgânico e carbono elementar para cada ano de monitoramento.

 Coeficientes de correlação

 Variáveis
 2009
 2010
 2011
 2012
 2015
 2016

 C.Org x C.E.
 0,77
 0,64
 0,6
 0,7
 0,71
 0,86

Tabela 4 - Coeficientes de correlação de Pearson (r)

Observa-se que, de maneira geral, há forte correlação entre C.Org. e C.E. principalmente por se tratar de dados ambientais, indicando que as fontes de poluição de ambos são similares.

As concentrações de MP_{2,5} e, consequentemente, de C.Org e C.E. tendem a ser maiores nos períodos de inverno em função das condições meteorológicas, que em São Paulo se caracterizam pela diminuição da precipitação e ocorrência de períodos de grande estabilidade atmosférica, proporcionando com isso condições desfavoráveis à dispersão dos poluentes (CETESB, 2018).

No **Gráfico 6**, são apresentadas as médias mensais de MP_{2,5}, C.Org e C.E no período de 2009 a 2012 e 2015 e 2016.

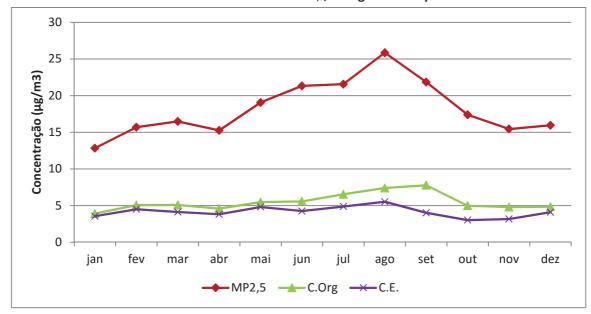


Gráfico 6 - Perfil das médias mensais de MP_{2,5}, C.Org e C.E. no período monitorado.

Fonte: CETESB (2021)

No **Gráfico 6**, observa-se aumento das concentrações de $MP_{2,5}$ e de carbono orgânico e elementar nos meses de inverno, entretanto, o carbono orgânico apresentou maior valor no início da primavera, enquanto o $MP_{2,5}$ e o C.E. apresentaram maiores valores médios no mês de agosto.

O **Gráfico 7** apresenta as correlações obtidas entre carbono orgânico e elementar, em Cerqueira César, por estação do ano considerando todo o período de monitoramento. As concentrações de C.Org e C.E. variaram de acordo com as estações do ano, o que é coerente com a literatura (WANG, 2019; GU, 2010).

Observa-se, considerando todo o período monitorado, que a correlação mais alta (r=0,83) foi obtida durante os meses de inverno seguida da primavera, verão e outono. Além da correlação, a análise das razões obtidas entre C.Org. e C.E. nas diferentes estações do ano, pode auxiliar na interpretação dos resultados.

y = 0,4606x + 3,1228 y = 0,4478x + 2,8945 Verão Outono $R^2 = 0,4141$ $R^2 = 0.485$ 14 14 12 12 10 10 (µg/m³) 8 8 β/m³) C.Org. C.Oorg. 6 Δ 2 0 0 0 2 6 10 12 6 10 C.E. (µg/m³) C.E. $(\mu g/m^3)$ y = 0,7242x + 2,8208 y = 1,2726x + 1,3732 Inverno **Primavera** $R^2 = 0,5501$ 14 20 12 16 10 C.Oorg. (µg/m3) C.Oorg. (µg/m³) 8 2 0 0 6 8 10 12 14 10 6 12 C.E. (µg/m³) C.E. (µg/m3)

Gráfico 7 – Correlação entre carbono orgânico e elementar, em Cerqueira César, por estação do ano considerando todo o período de monitoramento.

Fonte: CETESB (2021)

A **Tabela 5** mostra a relação entre carbono orgânico e carbono elementar obtida em todo o período de monitoramento.

Tabela 5 - Razão C.Org./C.E. e o desvio padrão obtido por estação do ano.

Razão	Verão	Outono	Inverno	Primavera
C.Org./C.E.	1,37 ± 0,58	1,44 ± 0,60	1,57 ± 0,72	1,84 ± 0,66

Conforme observado na **Tabela 5**, maiores razões C.Org/C.E. foram observadas na primavera, seguida do inverno, outono e as menores razões obtidas no verão.

Segundo a literatura (BEGUM, 2012) a razão C.Org/C.E. varia com a temperatura, assim, nos meses de verão, mais quentes, as razões são menores uma vez que as concentrações de compostos semivoláteis podem permanecer na fase gasosa, deixando de contribuir para a concentração do carbono orgânico no particulado, levando a uma correlação mais baixa em relação às demais estações do ano (**Gráfico 7**).

Razões maiores, como a observada na primavera, podem indicar contribuições diferentes de C.Org no aerossol, provenientes tanto de carbonos orgânicos primários como secundários, gerados por reações fotoquímicas dos compostos orgânicos voláteis (COV), mais comuns neste período do ano, o que está de acordo com a literatura (GU, 2010; SAMARA, 2014).

A maior correlação entre C.Org e C.E. obtida no inverno (r = 0,83) pode ter ocorrido por, neste período, o C.Org. não ser tão influenciado nem pelas altas temperatura nem pelas reações fotoquímicas, indicando serem essas as emissões mais próximas da fonte, que seria principalmente a combustão de veículos movidos a diesel e gasolina.

6 Comparação com dados ambientais de outros locais

A **Tabela 6** traz uma comparação dos resultados de C.Org, C.E. e C.T. obtidos neste estudo com valores encontrados em áreas urbanas de algumas cidades ao redor do mundo, em que pese a comparação dos resultados ser complexa uma vez que foram utilizadas diferentes condições, como métodos de amostragem e análise, limites de detecção e diferentes períodos de monitoramento, bem como locais de amostragem com características distintas.

Tabela 6 - Concentrações médias de C.Org, C.E. e C.T. obtidas em diferentes locais.

LOCAL / ANO	C.Org (μg/m³)	C.E. (μg/m³)	C.T. (μg/m³)	REFERÊNCIAS
S. Paulo, C.César - 2009	5,0	4,5	9,5	estudo atual
S. Paulo, C.César - 2010	6,6	4,9	11,5	estudo atual
S. Paulo, C.César - 2011	5,2	3,9	9,1	estudo atual
S. Paulo, C.César - 2012	6,0	4,4	10,4	estudo atual
S. Paulo, C.César - 2015	5,8	4,7	10,5	estudo atual
S. Paulo, C.César - 2016	5,4	3,4	8,8	estudo atual
Itália, Milão - 2002-2003	9,2	1,4	10,8	(LONATI, 2007)
Holanda, Amsterdam - jul-ago 2005/ jan-fev 2006	5,3	1,8	7,1	(VIANA, 2007)
Bélgica, Ghent - jun-jul 2004/ jan-fev 2005	4,1	1,0	5,1	(VIANA, 2007)
Espanha, Barcelona jul-ago/2004, nov- dez /2005	5,3	2,1	7,4	(VIANA, 2007)
Espanha, Bailen (industrial) - jun/2005- jun/2006	5,4	3,1	8,5	(PIO, 2011)
Portugal, Porto - 2004	4,3	2,2	6,5	(PIO, 2011)
EUA, Baltimore - 2002	5,7	1,1	6,8	(PARK, 2002)
Grécia, Atenas - 2008-2013	2,0	0,5	2,5	(PARASKEVOPOULOU, 2014)
China, Pequim- 2016 - 2017	11,0	3,4	14,4	(DONGSHENG,2019)
China, Tianjin - 2016 - 2017	12,0	3,1	15,1	(DONGSHENG,2019)

Os valores de C.Org em São Paulo foram da mesma ordem de grandeza dos de outros locais, com exceção da China, Itália e Grécia. Os teores de C.E. foram, em geral, maiores que os medidos em outras cidades.

7 Conclusões

- Observa-se que as médias anuais de MP_{2,5} apresentaram tendência de queda ao longo dos anos, a partir de 2010, o que não foi observado no caso das concentrações de carbono, que se mantiveram num patamar mais constante.
- A porcentagem média de C.T., no MP_{2,5}, observada, na estação Cerqueira César, no período monitorado foi de 53% representando praticamente a metade da concentração das partículas inaláveis finas. No entanto ao longo dos anos essa porcentagem apresentou certa variação.
- O comportamento sazonal do C.Org e C.E. é semelhante ao do MP_{2,5}, ou seja, ocorreu um aumento das médias mensais no período do inverno coincidindo com o período geralmente mais desfavorável à dispersão de poluentes primários no município de São Paulo, entretanto a máxima média mensal do C.Org foi no início da primavera.
- O conjunto total dos dados medidos no período de 2009 a 2012 e 2015 e 2016 mostrou correlação moderada entre as concentrações de MP_{2,5} e C.E. e forte correlação entre MP_{2,5} e carbono orgânico.
- De maneira geral, há uma forte correlação entre C.Org. e C.E., indicando que as fontes de poluição de ambos são similares.
- Maiores razões C.Org/C.E. foram observadas na primavera, seguida do inverno, outono e as menores razões obtidas no verão.
- Os valores de C.Org em São Paulo foram, de maneira geral, da mesma ordem de grandeza dos obtidos em cidades dos EUA e da União Europeia. Os teores de C.E. foram, em geral, maiores que os medidos nessas outras cidades.
- A CETESB dará continuidade do monitoramento em Cerqueira César nos próximos anos, para o acompanhamento da evolução dos teores de carbono no MP_{2,5}.

Referências

Begum, B.A., Hossain, A., Nahar, N., Markwitz, A. and Hopke, P.K. Organic and Black Carbon in PM2.5 at an Urban Site at Dhaka, Bangladesh. Aerosol Air Qual. Res. 12: 1062-1072 (2012). https://doi.org/10.4209/aaqr.2012.05.0138

CETESB. Teores de Material Particulado Carbonáceo na Atmosfera da Grande São Paulo. São Paulo, 1988.

CETESB - Modelo Receptor - Estudo de Caracterização de Aerossóis na Região Metropolitana de São Paulo - Cerqueira César. São Paulo, 2003 Disponível em: http://www.cetesb.sp.gov.br/ar/qualidadedo-ar/31-publicações-e-relatórios

CETESB. Caracterização das Redes Automáticas de Monitoramento da Qualidade do Ar na RMSP, Cerqueira Cesar. São Paulo, 2004 Disponível em: http://www.cetesb.sp.gov.br/ar/qualidade-doar/31-publicações-e-relatórios

CETESB. Relatório de Qualidade do Ar no Estado de São Paulo 2018. São Paulo, 2019 Disponível em: http://www.cetesb.sp.gov.br/ar/qualidade-do-ar/31-publicações-e-relatórios

Debra T Silverman, Diesel Exhaust and Lung Cancer—Aftermath of Becoming an IARC Group 1 Carcinogen, American Journal of Epidemiology, Volume 187, Issue 6, June 2018, Pages 1149-1152, https://doi.org/10.1093/aje/kwy036

Dongsheng J., Meng G., Willy Maenhaut, J., Cheng W., Linjun C., Wenkang G., Yang S., Jiaren S., Jinyuan X., Lili W., Yuesi W., The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities, Environment International, 126, 171-183 (2019) https://doi.org/10.1016/j.envint.2019.02.034.

Gu, J., Bai, Z., Liu, A., Wu, L., Xie, Y., Li, W., Dong, H. and Zhang, X. Characterization of Atmospheric Organic Carbon and Element Carbon of PM2.5 and PM10 at Tianjin, China. Aerosol Air Qual. Research 10: 167-176, (2010)

https://doi.org/10.4209/aagr.2009.12.0080

Lonati, G., Ozgen, S., Giugliano, M.. Primary and secondary carbonaceous species in PM_{2.5} samples in Milan (Italy), Atmospheric Environment, Volume 41 (22), 4599-4610 (2007) https://doi.org/10.1016/j.atmosenv.2007.03.046.

Karanasiou, A. & Minguillón, M. & Viana, M. & Alastuey, A. & Putaud, J. & Maenhaut, W. & Panteliadis, P. & Močnik, G. & Favez, O. & Kuhlbusch, T.A.J.. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. **Atmos. Meas Tech. Discuss**. 8. 9649-9712 (2015)

Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. *Malawi Med J.*, 24(3):69-71 (2012)

Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., Theodosi, C., and Mihalopoulos, N.: Long-term characterization of organic and elemental carbon in the PM_{2.5} fraction: the case of Athens, Greece, Atmos. Chem. Phys., 14, 13313-13325, https://doi.org/10.5194/acp-14-13313-2014 (2014)

Park, S. S., Harrison, D., Pancras, J. P., and Ondov, J. M. (2005), Highly time-resolved organic and elemental carbon measurements at the Baltimore Supersite in 2002, J. Geophys. Res., 110, D07S06, doi:10.1029/2004JD004610.

Pio, C. & Cerqueira, M. & Harrison, R. & Nunes, T. & Mirante, F. & Alves, C. & Oliveira, C. & Verdona, A. M. & Artíñano, B & Matos, M.. (2011). OC/EC Ratio Observations in Europe: Re-thinking the Approach for Apportionment between Primary and Secondary Organic Carbon. Atmospheric Environment. 45. 6121-6132 (2011). 10.1016/j.atmosenv.2011.08.045.

Qi M, Jiang L, Liu Y, Xiong Q, Sun C, Li X, Zhao W, Yang X. Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM_{2.5} in the Beijing, Tianjin, and Langfang Region, China. Int J Environ **Res Public Health**. Jul 13;15(7):1483 (2018)

Samara, C., Voutsa, D., Kouras, A. et al. Organic and elemental carbon associated to PM₁₀ and PM_{2.5} at urban sites of northern Greece. **Environ Sci Pollut Res** 21, 1769–1785 (2014). https://doi.org/10.1007/s11356-013-2052-8

UNITED STATES. EPA- Environmental Protection Agency http://views.cira.colostate.edu/fed/SiteBrowser/Default.aspx, Acesso em 02/2020

UNITED STATES. EPA. - Health Assessment Document for Diesel Engine Exhaust-EPA/600/8-90/057F -May 2002

Viana, M., Maenhaut, W., ten Brink H.M., , Chi X., Weijers, E., Querol, X., Alastuey, A., Mikuška, P., Večeřa, Z.. Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities, Atmospheric Environment, 41 (28), 5972-5983 (2007). https://doi.org/10.1016/j.atmosenv.2007.03.035.

Wang, J.; Yu, A.; Yang, L.; Fang, C. Research on Organic Carbon and Elemental Carbon Distribution Characteristics and Their Influence on Fine Particulate Matter (PM_{2.5}) in Changchun City. **Environments** , 6, 21 (2019).

WHO. WORLD HEALTH ORGANIZATION. Air Quality Guidelines, Sumary of Risk Assesment - Global *Update, 2005.*

Apêndice

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)
14/01/2009	15	4,7	6,5	11,2
01/02/2009	13	4,4	2,5	6,9
07/02/2009	20	6,1	5,3	11,5
13/02/2009	9	3,1	3,4	6,5
25/02/2009	18	5,3	6,7	12,0
09/03/2009	14	4,2	7,1	11,3
15/03/2009	14	4,8	2,1	6,9
21/03/2009	15	4,9	4,7	9,6
27/03/2009	21	6,3	3,8	10,1
02/04/2009	11	3,8	3,6	7,5
08/04/2009	10	2,7	2,7	5,5
14/04/2009	17	4,6	8,6	13,2
20/04/2009	15	4,6	3,0	7,6
26/04/2009	6	2,6	1,8	4,4
02/05/2009	8	2,6	1,6	4,2
08/05/2009	31	8,2	7,6	15,8
14/05/2009	21	6,6	7,3	13,9
20/05/2009	14	3,4	2,4	5,8
26/05/2009	22	7,2	9,0	16,2
07/06/2009	10	3,5	1,0	4,5
25/06/2009	33	7,5	8,4	16,0
07/07/2009	33	8,9	10,0	18,9
13/07/2009	28	7,9	8,7	16,7
19/07/2009	4	2,4	0,6	3,1
25/07/2009	14	3,9	3,4	7,4
31/07/2009	14	3,3	1,9	5,3
18/08/2009	22	6,4	7,4	13,8
24/08/2009	15	4,7	4,8	9,5
05/09/2009	28	9,6	4,8	14,4
11/09/2009	14	4,7	2,4	7,1
05/10/2009	23	7,4	6,9	14,3
11/10/2009	15	5,4	2,6	8,0
17/10/2009	12	3,6	2,7	6,3
23/10/2009	13	4,0	2,0	6,0
29/10/2009	6	2,6	1,7	4,3
22/11/2009	13	5,1	4,1	9,2
28/11/2009	11	4,3	4,5	8,8
04/12/2009	5	2,3	1,5	3,8
10/12/2009	14	4,0	3,6	7,6
22/12/2009	22	6,1	5,4	11,6

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(µg/m³)	(μg/m³)	(μg/m³)
24/01/2010	11	3,9	2,9	6,8
05/02/2010	20	7,5	8,6	16,1
23/02/2010	22	6,2	11,0	17,2
07/03/2010	12	3,6	2,3	6,0
13/03/2010	22	6,9	7,4	14,4
19/03/2010	21	6,6	6,9	13,5
25/03/2010	28	7,3	3,4	10,7
31/03/2010	10	3,9	2,8	6,7
12/04/2010	8	3,3	3,5	6,8
18/04/2010	15	5,3	2,4	7,7
18/05/2010	26	8,0	7,2	15,2
24/05/2010	29	7,8	6,9	14,8
30/05/2010	19	7,5	5,2	12,6
23/06/2010	12	4,1	3,3	7,4
29/06/2010	20	4,6	2,4	7,0
05/07/2010	23	7,3	5,5	12,9
17/07/2010	9	2,5	1,5	4,0
23/07/2010	26	7,5	7,0	14,5
29/07/2010	24	6,4	7,2	13,6
10/08/2010	16	3,8	2,8	6,5
16/08/2010	6	2,8	1,6	4,4
28/08/2010	53	11,4	3,5	14,9
09/09/2010	9	4,1	2,3	6,4
15/10/2010	31	7,2	6,5	13,7
21/10/2010	30	6,7	3,5	10,2
20/11/2010	24	7,0	5,8	12,8
26/11/2010	12	4,8	4,0	8,8
20/12/2010	24	5,9	6,1	12,0

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(µg/m³)	(µg/m³)	(μg/m³)
14/01/2011	13	3,7	6,0	9,7
07/02/2011	18	5,5	3,8	9,3
13/02/2011	13	4,5	3,9	8,4
19/02/2011	21	5,9	2,6	8,4
25/02/2011	17	4,6	3,5	8,0
03/03/2011	12	3,3	2,4	5,7
02/04/2011	16	4,7	5,9	10,6
14/04/2011	26	5,6	9,4	15,0
08/05/2011	23	7,0	3,3	10,3
14/05/2011	14	3,4	1,4	4,8
20/05/2011	27	5,2	3,9	9,2
26/05/2011	34	7,6	11,0	18,6
01/06/2011	45	8,1	5,6	13,7
07/07/2011	22	4,8	2,3	7,1
19/07/2011	34	9,3	5,0	14,3
25/07/2011	22	6,0	6,4	12,4
31/07/2011	27	6,7	3,3	10,0
06/08/2011	34	9,3	8,7	18,0
12/08/2011	31	4,8	2,3	7,1
18/08/2011	28	6,4	3,6	9,9
24/08/2011	26	5,1	2,3	7,5
17/09/2011	17	4,5	1,9	6,4
23/09/2011	21	7,2	4,3	11,5
05/10/2011	21	6,3	4,8	11,1
11/10/2011	26	5,9	2,4	8,2
17/10/2011	5	1,6	1,0	2,6
23/10/2011	16	4,0	1,7	5,7
29/10/2011	26	5,5	2,6	8,1
04/11/2011	16	3,7	2,4	6,1
16/11/2011	5	1,8	1,2	3,0
22/11/2011	20	5,0	6,2	11,2
28/11/2011	16	5,3	2,1	7,4
04/12/2011	15	3,8	1,0	4,8
10/12/2011	5	2,5	1,5	4,0
16/12/2011	19	5,5	6,6	12,1
21/12/2011	25	5,9	6,5	12,4
28/12/2011	8	2,9	2,3	5,2

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(µg/m³)	(µg/m³)	(μg/m³)
04/01/2012	19	4,4	3,0	7,4
09/01/2012	9	2,3	1,1	3,4
27/01/2012	6	2,2	1,5	3,7
04/02/2012	16	4,8	3,1	7,9
16/02/2012	20	6,2	3,3	9,5
22/02/2012	15	4,1	6,1	10,2
17/03/2012	12	3,8	1,3	5,2
23/03/2012	18	7,0	8,7	15,7
29/03/2012	14	5,0	3,7	8,7
04/04/2012	24	7,0	4,9	12,0
16/04/2012	8	2,6	1,5	4,0
22/04/2012	5	2,2	0,9	3,1
28/04/2012	19	4,4	2,5	6,9
10/05/2012	25	7,6	9,4	17,0
03/06/2012	14	3,2	2,2	5,4
15/06/2012	34	8,0	5,3	13,2
21/06/2012	15	4,2	4,8	9,0
03/07/2012	42	12,7	13,3	26,0
09/07/2012	9	2,9	1,7	4,6
15/07/2012	21	6,0	1,6	7,6
21/07/2012	24	7,5	8,3	15,8
27/07/2012	23	6,7	4,5	11,2
02/08/2012	24	7,1	8,7	15,8
08/08/2012	28	8,2	4,2	12,5
14/08/2012	22	7,4	4,4	11,8
20/08/2012	23	7,5	6,0	13,5
01/09/2012	34	10,6	7,1	17,7
07/10/2012	40	10,6	3,0	13,6
13/10/2012	5	2,0	0,6	2,6
19/10/2012	17	5,3	3,9	9,2
25/10/2012	22	6,8	3,1	9,9
24/11/2012	31	10,2	4,0	14,2
30/11/2012	13	4,3	2,4	6,8
06/12/2012	23	7,7	8,5	16,2
12/12/2012	16	6,6	3,6	10,1
18/12/2012	20	6,2	5,9	12,1

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
09/01/2015	15	5,7	7,0	12,7
15/01/2015	16	4,9	2,5	7,4
21/01/2015	11	3,6	2,3	5,9
27/01/2015	12	3,6	4,9	8,4
08/02/2015	15	5,1	2,0	7,0
14/02/2015	14	5,6	2,8	8,3
20/02/2015	11	4,6	4,5	9,1
26/02/2015	18	6,0	8,0	14,0
04/03/2015	23	5,6	3,5	9,1
10/03/2015	13	3,0	3,1	6,1
16/03/2015	16	4,6	6,6	11,2
22/03/2015	8	3,7	1,7	5,4
28/03/2015	25	6,1	2,0	8,1
03/04/2015	13	2,9	2,8	5,8
09/04/2015	26	5,3	3,4	8,7
15/04/2015	20	5,6	6,7	12,4
27/04/2015	9	3,6	3,0	6,6
09/05/2015	20	4,9	2,5	7,4
15/05/2015	16	4,3	4,5	8,8
21/05/2015	17	5,2	4,1	9,3
27/05/2015	20	6,2	7,2	13,4
02/06/2015	11	3,9	3,1	7,0
02/07/2015	29	7,3	3,9	11,2
08/07/2015	13	8,6	4,0	12,5
20/07/2015	14	6,4	6,0	12,5
26/07/2015	13	5,0	1,5	6,4
01/08/2015	40	9,9	9,1	19,0
07/08/2015	30	12,8	12,3	25,1
13/08/2015	28	8,9	7,3	16,1
19/08/2015	19	6,6	4,4	11,1
25/08/2015	20	5,5	5,0	10,5
31/08/2015	31	9,6	10,1	19,8
30/09/2015	20	6,3	3,6	9,8
06/10/2015	14	4,0	2,6	6,6
30/10/2015	11	4,3	3,4	7,7
05/11/2015	13	4,5	4,9	9,4
11/11/2015	32	5,2	4,2	9,3
03/11/2015	25	5,9	3,4	9,3
29/11/2015	8	4,0	1,9	5,9
05/12/2015	18	5,7	3,4	9,1
11/12/2015	16	5,2	4,9	10,1
17/12/2015	22	5,9	3,2	9,1

Data da	MP _{2,5}	C.Org	C.E.	C.T.
Amostragem	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)
06/01/2016	19	5,4	3,0	8,3
18/01/2016	8	2,4	2,0	4,3
05/02/2016	18	6,1	4,8	11,0
11/02/2016	10	3,2	2,3	5,5
29/02/2016	6	2,3	1,8	4,1
18/03/2016	16	5,3	4,3	9,5
30/03/2016	18	5,5	4,5	10,0
05/04/2016	11	4,1	3,1	7,2
11/04/2016	21	6,0	2,9	8,9
17/04/2016	27	10,9	5,1	15,9
29/04/2016	13	4,1	2,4	6,6
05/05/2016	20	5,9	3,0	9,0
11/05/2016	10	3,9	2,8	6,7
17/05/2016	11	3,5	3,6	7,1
29/05/2016	12	4,3	1,7	6,0
04/06/2016	14	4,7	4,2	9,0
22/06/2016	12	4,6	3,8	8,3
28/06/2016	36	10,4	6,9	17,3
10/07/2016	37	13,0	7,5	20,6
28/07/2016	13	3,9	1,7	5,7
03/08/2016	15	3,8	1,9	5,7
09/08/2016	18	6,1	5,2	11,3
14/09/2016	34	12,8	6,0	18,7
20/09/2016	7	3,1	1,2	4,3
26/09/2016	10	3,3	1,6	4,9
20/10/2016	16	6,0	4,1	10,1
26/10/2016	16	5,6	4,1	9,7
07/11/2016	18	5,1	3,2	8,3
19/11/2016	5	2,1	0,6	2,6
25/11/2016	18	5,6	2,0	7,6
01/12/2016	8	2,8	1,5	4,3
07/12/2016	22	8,0	7,2	15,2
13/12/2016	13	4,6	4,0	8,6

Secretaria de Infraestrutura e Meio Ambiente

Acompanhe as redes sociais da CETESB:

Facebook: facebook.com/cetesbsp
in Linkedin: linkedin.com/company/cetesb
in Instagram: instagram.com/cetesbsp

SoundCloud: soundcloud.com/cetesbsp