Apêndice C Índices de Qualidade das Águas

1. Introdução

Os índices e indicadores ambientais nasceram como resultado da crescente preocupação social com os aspectos ambientais do desenvolvimento, processo que requer um número elevado de informações em graus de complexidade cada vez maiores. Por outro lado, os indicadores tornaram-se fundamentais no processo decisório das políticas públicas e no acompanhamento de seus efeitos. Esta dupla vertente apresenta-se como um desafio permanente de gerar indicadores e índices que tratem um número cada vez maior de informações, de forma sistemática e acessível, para os tomadores de decisão.

Nessa linha, a CETESB utiliza desde 1975, o Índice de Qualidade das Águas – IQA, com vistas a servir de informação básica de qualidade de água para o público em geral, bem como para o gerenciamento ambiental das 22 Unidades de Gerenciamento dos Recursos Hídricos do Estado de São Paulo.

As principais vantagens dos índices são as facilidades de comunicação com o público leigo, o status maior do que as variáveis isoladas e o fato de representar uma média de diversas variáveis em um único número, combinando unidades de medidas diferentes em uma única unidade. No entanto, sua principal desvantagem consiste na perda de informação das variáveis individuais e da sua interação. O índice, apesar de fornecer uma avaliação integrada, jamais substituirá uma avaliação detalhada da qualidade das águas de uma determinada bacia hidrográfica.

As variáveis de qualidade, que fazem parte do cálculo do IQA, refletem, principalmente, a contaminação dos corpos hídricos ocasionada pelo lançamento de esgotos domésticos. É importante também salientar que este índice foi desenvolvido para avaliar a qualidade das águas, tendo como determinante principal a sua utilização para o abastecimento público, considerando aspectos relativos ao tratamento dessas águas.

A crescente urbanização e industrialização de algumas regiões do Estado de São Paulo têm como conseqüência um maior comprometimento da qualidade das águas dos rios e reservatórios, devido, principalmente, à maior complexidade de poluentes que estão sendo lançados no meio ambiente e à deficiência do sistema de coleta e tratamento dos esgotos gerados pela população. Sendo assim, a qualidade da água obtida através do IQA apresenta algumas limitações, entre elas a de considerar apenas a sua utilização para o abastecimento público. Além disso, mesmo considerando-se esse fim específico, o índice não contempla outras variáveis, tais como: metais pesados, compostos orgânicos com potencial mutagênico, substâncias que afetam as propriedades organolépticas da água, número de células de cianobactérias e o potencial de formação de trihalometanos das águas de um manancial.

Tanto na Legislação Estadual (Decreto Estadual 8468/76) quanto na Federal (Resolução CONAMA 357/05), está estabelecido que os usos preponderantes do recurso hídrico são, dentre outros:

- Abastecimento público;
- Preservação do equilíbrio das comunidades aquáticas.

Desde 2002, a CETESB utiliza índices específicos para cada uso do recurso hídrico: IAP - Índice de Qualidade de Águas Brutas para Fins de Abastecimento Público e o IVA - Índice de Preservação da Vida Aguática.

O IAP, comparado com o IQA, é um índice mais fidedigno da qualidade da água bruta a ser captada, que após tratamento, será distribuída para a população. Do mesmo modo, o IVA foi considerado um indicador mais adequado da qualidade da água visando a proteção da vida aquática, por incorporar, com ponderação mais significativa, variáveis mais representativas, especialmente a toxicidade e a eutrofização. Observou-se, ainda, que ambos os índices poderão ser aprimorados com o tempo, com a supressão ou inclusão de variáveis de interesse.

Para refletir a qualidade das águas para seus múltiplos usos, tem-se, ainda o índice de Balneabilidade, que avalia as condições da água para fins de recreação de contato primário.

Assim, a avaliação da qualidade das águas é composta pelos Índices:

- Qualidade de Águas Brutas para Fins de Abastecimento Público (IAP);
- Preservação da Vida Aquática (IVA);
- Balneabilidade (IB).

O Índice de Estado Trófico (IET), que estabelece o grau de trofia dos corpos hídricos, avaliando o enriquecimento por nutrientes e seus efeitos relacionados ao crescimento excessivo de algas, compõe o IVA. Os índices de comunidades (Fitoplanctônica, Zooplânctônica e Bentônica) também auxiliam no diagnóstico da qualidade para fins de preservação da vida aquática.

Desde 2002 a CETESB avalia a qualidade dos sedimentos do Estado de São Paulo. Em 2004 foi criado o Critério de Qualidade dos Sedimentos (CQS) que estabeleceu classes de qualidade para quatro linhas de evidência: substâncias químicas, ecotoxicidade, mutagenicidade e comunidade bentônica. O CQS foi sendo aprimorado ao longo dos anos e, atualmente, conta com nove linhas de evidência distribuídas entre os componentes químico, toxicológico e biótico.

Para avaliar a qualidade das águas costeiras, em 2011, criou-se o Índice de Qualidade das Águas Costeiras (IQAC) baseado na metodologia do Índice de Qualidade elaborado pelo CCME (2001), um método estatístico que relaciona os resultados nas análises com um valor padrão para cada variável.

Finalmente, é apresentado o Indicador de Coleta e Tratabilidade de Esgoto da População Urbana de Município (ICTEM), desenvolvido pela CETESB, formado por cinco elementos que representam as condições a serem avaliadas no sistema público de tratamento de esgotos.

2. IQA - Índice de Qualidade das Águas

A partir de um estudo realizado em 1970 pela "National Sanitation Foundation" dos Estados Unidos, a CETESB adaptou e desenvolveu o IQA — Índice de Qualidade das Águas que incorpora nove variáveis consideradas relevantes para a avaliação da qualidade das águas, tendo como determinante principal a sua utilização para abastecimento público.

A criação do IQA baseou-se numa pesquisa de opinião junto a especialistas em qualidade de águas, que indicaram as variáveis a serem avaliadas, o peso relativo e a condição com que se apresenta cada parâmetro, segundo uma escala de valores "rating". Das 35 variáveis indicadoras de qualidade de água inicialmente propostos, somente nove foram selecionados. Para estes, a critério de cada profissional, foram estabelecidas curvas de variação da qualidade das águas de acordo com o estado ou a condição de cada parâmetro. Estas curvas de variação, sintetizadas em um conjunto de curvas médias para cada parâmetro, bem como seu peso relativo correspondente, são apresentados na figura 1.

O IQA é calculado pelo produtório ponderado das qualidades de água correspondentes às variáveis que integram o índice.

A seguinte fórmula é utilizada:

$$IQA = \prod_{i=1}^{n} q_i^{W_i}$$

onde:

IQA: Índice de Qualidade das Águas, um número entre 0 e 100;

qi: qualidade do i-ésimo parâmetro, um número entre 0 e 100, obtido da respectiva "curva média de variação de qualidade", em função de sua concentração ou medida e,

wi: peso correspondente ao i-ésimo parâmetro, um número entre 0 e 1, atribuído em função da sua importância para a conformação global de qualidade, sendo que:

em que:

n: número de variáveis que entram no cálculo do IQA.

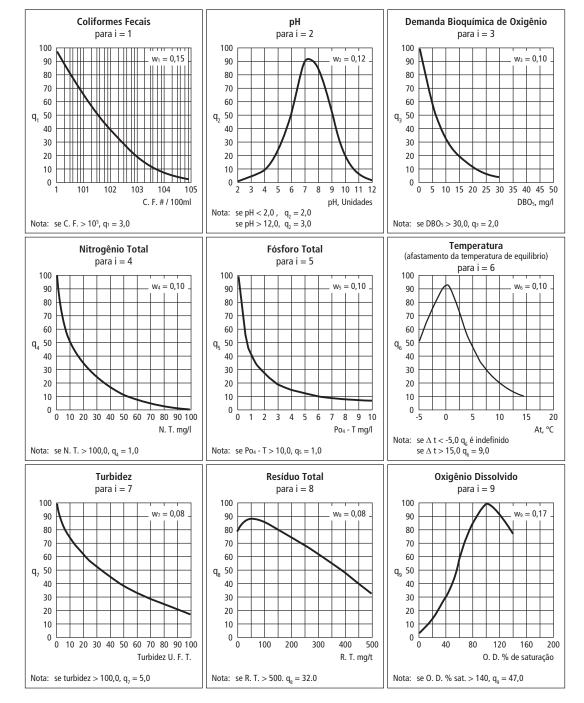


Figura 1 – Curvas Médias de Variação de Qualidade das Águas

No caso de não se dispor do valor de alguma das nove variáveis, o cálculo do IQA é inviabilizado.

Para ensaios de *Escherichia coli* é possível utilizar a mesma curva de qualidade que foi desenvolvida para Coliformes Termotolerantes. Constatou-se mediante estudo realizado pela própria CETESB em 2008 que existe uma correlação entre os resultados de ambas as análises. Para cada 100 Coliformes Termotolerantes detectados em uma amostra havia aproximadamente 80 representantes de *Escherichia coli*, ou seja, aplicandose um fator de correção de 1,25 sobre o resultado de *E. coli* pode-se utilizar o valor equivalente da curva de Coliformes Termotolerantes.

A partir do cálculo efetuado, pode-se determinar a qualidade das águas brutas, que é indicada pelo IQA, variando numa escala de 0 a 100, representatado na tabela 1.

CategoriaPonderaçãoÓTIMA $79 < IQA \le 100$ BOA $51 < IQA \le 79$ REGULAR $36 < IQA \le 51$ RUIM $19 < IQA \le 36$ PÉSSIMA $IQA \le 19$

Tabela 1 – Classificação do IQA

3. IAP - Índice de Qualidade das Águas Brutas para Fins de Abastecimento Público

Este índice é calculado nos pontos de amostragem dos rios e reservatórios que são utilizados para o abastecimento público.

O IAP é o produto da ponderação dos resultados atuais do IQA (Índice de Qualidade de Águas) e do ISTO (Índice de Substâncias Tóxicas e Organolépticas), que é composto pelo grupo de substâncias que afetam a qualidade organoléptica da água, bem como de substâncias tóxicas. Assim, o índice será composto por três grupos principais de variáveis:

IQA – grupo de variáveis básicas (Temperatura da Água, pH, Oxigênio Dissolvido, Demanda Bioquímica de Oxigênio, Coliformes Termotolerantes/*E. coli*, Nitrogênio Total, Fósforo Total, Sólido Total e Turbidez);

ISTO – a) Variáveis que indicam a presença de substâncias tóxicas (Potencial de Formação de Trihalometanos - PFTHM, Número de Células de Cianobactérias, Cádmio, Chumbo, Cromo Total, Mercúrio e Níquel);

b) Grupo de variáveis que afetam a qualidade organoléptica (Ferro, Manganês, Alumínio, Cobre e Zinco).

• ISTO – Índice de Substâncias Tóxicas e Organolépticas

As variáveis que indicam a presença de substâncias tóxicas e que afetam a qualidade organoléptica são agrupadas de maneira a fornecer o Índice de Substâncias Tóxicas e Organoléptica (ISTO), utilizado para determinar o IAP, a partir do IQA original.

Para cada parâmetro incluído no ISTO são estabelecidas curvas de qualidade que atribuem ponderações variando de 0 a 1.

As curvas de qualidade, representadas através das variáveis potencial de formação de trihalometanos e metais, foram construídas utilizando-se dois níveis de qualidade (qi), que associam os valores numéricos 1.0 e 0.5, respectivamente, ao limite inferior (LI) e ao limite superior (LS). A figura 2 mostra a curva de qualidade padrão para as variáveis incluídas no ISTO, com exceção feita às variáveis teste de Ames e número de célula de cianobactérias.

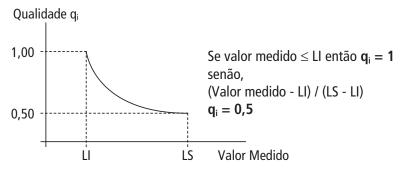


Figura 2 – Curva de qualidade padrão para as variáveis incluídas no ISTO

As faixas de variação de qualidade (q_i), que são atribuídas aos valores medidos para o potencial de formação de trihalometanos, para os metais que compõem o ISTO, refletem as seguintes condições de qualidade da água bruta destinada ao abastecimento público:

Valor medido ≤ LI: águas adequadas para o consumo humano. Atendem aos padrões de potabilidade da Portaria 2914/11 do Ministério da Saúde em relação às variáveis avaliadas.

LI < Valor medido ≤ LS: águas adequadas para tratamento convencional ou avançado. Atendem aos padrões de qualidade da classe 3 da Resolução CONAMA 357/05 em relação às variáveis determinadas.

Valor medido > **LS**: águas que não devem ser submetidas apenas a tratamento convencional. Não atendem aos padrões de qualidade da classe 3 da Resolução CONAMA 357/05 em relação às variáveis avaliadas.

Desta forma, o limite inferior para cada uma dessas variáveis foi considerado como sendo os padrões de potabilidade estabelecidos na Portaria 2914/11 do Ministério da Saúde e para o limite superior foram considerados os padrões de qualidade de água doce Classe 3 da CONAMA 357/05.

Note que para o **Cromo** a CONAMA 357/05 estabelece um padrão de qualidade igual ao padrão de potabilidade da Portaria 2914/11 (0,05 mg/L), portanto optou-se por adotar um nível de concentração para o limite superior que fosse passível de ser removido por meio de tratamento convencional. De acordo com o Drinking Water and Health, 1977, o Cromo possui uma taxa de remoção no tratamento convencional variando de 0 a 30%. Aplicando-se uma taxa de remoção média de 15% ao limite inferior, obtém-se um limite superior de 0,059 mg/L.

O **Zinco** também possui um padrão de potabilidade igual ao padrão de qualidade CONAMA 357/05 (5,0 mg/L), também optou-se por adotar um nível de concentração para o limite superior que fosse passível de ser removido por meio de tratamento convencional. Da mesma forma que o Cromo, o Drinking Water and Health, 1977, estabelece uma taxa de remoção no tratamento convencional variando de 0 a 30%. Aplicando-se a taxa média de remoção de 15% ao limite inferior, obtém-se um limite superior de 5,9 mg/L.

Para estabelecer o limite superior do Cobre, utilizou-se uma taxa de remoção de 75% e para o alumínio, uma taxa de 90%.

Com relação ao **Níquel**, o padrão de potabilidade na Portaria 2914/11 é de 0,07 mg/L. Porém foi utilizado como referência a Organização Mundial da Saúde, que estabelece um valor de 0,02 mg/L.

No caso do **potencial de formação de THM**, foi estabelecida uma equação de regressão linear entre as variáveis potencial de formação de THM na água bruta e, trihalometanos na água tratada, para isso foram utilizados valores médios de 1997 a 2002, de ambas as variáveis, considerando os mananciais do Guarapiranga, Rio Grande, Cantareira, Baixo Cotia, Alto Cotia e Alto Tietê.

Tanto o limite superior quanto o inferior, foram obtidos por meio desta equação. O limite superior do potencial foi estimado para a concentração de THM da Portaria 2914/11, de 100 μg/L, enquanto que o inferior, foi estimado a partir do nível de THM estabelecido na legislação norte americana, de 80 μg/L. O limite superior do potencial de formação de THMs forneceu um valor de 461 μg/L e o inferior de 373 μg/L.

Na Tabela 2 são relacionados os limites inferiores e superiores adotados para os metais e o potencial de formação de trihalometanos.

Grupo	Variáveis	Unidade	Limite Inferior	Limite Superior
	Cádmio	mg/L	0,005	0,01
	Chumbo	Mg/L	0,01	0,033
Távisas	Cromo Total	mg/L	0,05	0,059
Tóxicos	Níquel	mg/L	0,02	0,025
	Mercúrio	mg/L	0,001	0,002
	PFTHM	μg/L	373	461
	Alumínio	mg/L	0,2	2
	Cobre	mg/L	2	8
Organolépticos	Ferro	mg/L	0,3	5
	Manganês	mg/L	0,1	0,5
	Zinco	mg/L	5	5,9

Tabela 2 – Limites Superiores e Inferiores dos metais e PFTHM

Em ambientes lênticos, uma característica importante da qualidade da água para fins de abastecimento público, é a participação da componente biológica (algas). Até 2005, o IAP apresentava essa deficiência de não contemplar, diretamente, essa variável específica na sua avaliação.

Com o suporte das novas legislações — Portaria 2914/11 do Ministério da Saúde e Resolução CONAMA 357/05, que estabeleceram padrões de qualidade para o Número de Células de Cianobactérias, decidiu-se pela inclusão dessa variável no grupo do ISTO.

Vários gêneros e espécies de cianobactérias, que formam florações, produzem toxinas. As toxinas de cianobactérias, conhecidas como cianotoxinas, constituem uma grande fonte de produtos naturais tóxicos, podendo ter ação aguda e eventualmente até causar a morte por parada respiratória após poucos minutos de exposição (alcalóides ou organofosforados neurotóxicos) ou atuar de forma crônica, acumulando-se em órgãos como o fígado (peptídeos ou alcalóides hepatotóxicos) (Azevedo, 1998).

A tabela 3 estipula a taxação adotada para o número de células de cianobactérias, que foi baseada nessas legislações e nos dados existentes da rede de monitoramento da CETESB, desde 2002.

Tabela 3 – Faixas de número de células de cianobactérias e a respectiva taxação para o cálculo do ISTO.

Níveis	Taxação (q _{NCC})
N°. de células ≤ 20.000	1,00
20.000 < N°. de células ≤ 50.000	0,80
$50.000 < N^{\circ}$. de células ≤ 100.000	0,70
100.000 < N°. de células ≤ 200.000	0,60
200.000 < N°. de células ≤ 500.000	0,50
N°. de células > 500.000	0,35

Nos pontos de amostragem, situados em ambientes lênticos e utilizados para abastecimento público, o número de células de cianobactérias é uma variável obrigatória para o cálculo do IAP. Nos demais pontos é opcional. Na rede de monitoramento, essa variável é considerada em todos os pontos que possuem resultado.

Portanto, através das curvas de qualidade, determinam-se os valores de qualidade normalizados, qi (número variando entre 0 e 1), para cada uma das variáveis do ISTO, que estão incluídas ou no grupo de substâncias tóxicas, ou no grupo de organolépticas.

A ponderação do grupo de substâncias tóxicas (ST) é obtida através da multiplicação dos dois valores mínimos mais críticos do grupo de variáveis que indicam a presença dessas substâncias na água:

$$ST = Min-1 (q_{TA}; q_{THMFP}; q_{Cd}; q_{Cr}; q_{Pb}; q_{Ni}; q_{Hg}; q_{NCC}) \times Min-2 (q_{TA}; q_{THMFP}; q_{Cd}; q_{Cr}; q_{Pb}; q_{Ni}; q_{Hg}; q_{NCC})$$

A ponderação do grupo de substâncias organolépticas (SO) é obtida através da média aritmética das qualidades padronizadas das variáveis pertencentes a este grupo:

SO = Média Aritmética
$$(q_{AI}; q_{Cu}; q_{Zn}; q_{Fe}; q_{Mn})$$

• Cálculo do ISTO

O ISTO é resultado do produto dos grupos de substâncias tóxicas e as que alteram a qualidade organoléptica da água, como descrito a seguir:

$$ISTO = ST \times SO$$

Cálculo do IAP

O IAP é calculado a partir do produto entre o antigo IQA e o ISTO, segundo a seguinte expressão:

$$IAP = IQA \times ISTO$$

As classificações do IAP estão ilustradas na tabela 4.

Tabela 4 – Classificação do IAP

Categoria	Ponderação
ÓTIMA	$79 < IAP \leq 100$
BOA	51 < IAP ≤ 79
REGULAR	$36 < IAP \le 51$
RUIM	$19 < IAP \le 36$
PÉSSIMA	IAP ≤ 19

4. IET – Índice do Estado Trófico

O Índice do Estado Trófico tem por finalidade classificar corpos d'água em diferentes graus de trofia, ou seja, avalia a qualidade da água quanto ao enriquecimento por nutrientes e seu efeito relacionado ao crescimento excessivo das algas e cianobactérias.

Das três variáveis citadas para o cálculo do Índice do Estado Trófico, foram aplicadas apenas duas: clorofila a e fósforo total, uma vez que os valores de transparência muitas vezes não são representativos do estado de trofia, pois esta pode ser afetada pela elevada turbidez decorrente de material mineral em suspensão e não apenas pela densidade de organismos planctônicos, além de muitas vezes não se dispor desses dados. Dessa forma, não será considerado o cálculo do índice de transparência em reservatórios e rios do Estado de São Paulo.

Nesse índice, os resultados correspondentes ao fósforo, IET(P), devem ser entendidos como uma medida do potencial de eutrofização, já que este nutriente atua como o agente causador do processo. A avaliação correspondente à clorofila a, IET(CL), por sua vez, deve ser considerada como uma medida da resposta do corpo hídrico ao agente causador, indicando de forma adequada o nível de crescimento de algas que tem lugar em suas águas. Assim, o índice médio engloba, de forma satisfatória, a causa e o efeito do processo. Deve-se ter em conta que num corpo hídrico, em que o processo de eutrofização encontra-se plenamente estabelecido, o estado trófico determinado pelo índice da clorofila a certamente coincidirá com o estado trófico determinado pelo índice do fósforo. Já nos corpos hídricos em que o processo esteja limitado por fatores ambientais, como a temperatura da água ou a baixa transparência, o índice relativo à clorofila a irá refletir esse fato, classificando o estado trófico em um nível de menor trofia àquele determinado pelo índice do fósforo. Além disso, caso sejam aplicados algicidas, a conseqüente diminuição das concentrações de clorofila a resultará em uma redução na classificação obtida a partir do seu índice.

O Índice do Estado Trófico apresentado e utilizado no cálculo do IVA, será composto pelo Índice do Estado Trófico para o fósforo – IET(PT) e o Índice do Estado Trófico para a clorofila a – IET(CL), modificados por Lamparelli (2004), sendo estabelecidos para ambientes lóticos, segundo as equações:

- Rios

IET (CL) = 10x(6-((-0.7-0.6x(ln CL))/ln 2))-20IET (PT) = 10x(6-((0.42-0.36x(ln PT))/ln 2))-20

- Reservatórios

IET (CL) = $10x(6-((0.92-0.34x(\ln CL))/\ln 2))$ IET (PT) = $10x(6-(1.77-0.42x(\ln PT)/\ln 2))$

onde:

PT: concentração de fósforo total medida à superfície da água, em μg.L-1;

CL: concentração de clorofila a medida à superfície da água, em µg.L-1;

In: logaritmo natural.

O resultado dos valores mensais apresentados nas tabelas do IET será a média aritmética simples, com arredondamento da primeira casa decimal, dos índices relativos ao fósforo total e a clorofila a, segundo a equação:

$$IET = [IET (PT) + IET (CL)] / 2$$

Na interpretação dos resultados, os pontos serão classificados conforme os resultados obtidos para o IET anual. Assim, para cada ponto, serão utilizadas as médias geométricas das concentrações de fósforo total e clorofila a para cálculo do IET(PT) e IET(CL) anual, sendo o IET final resultante da média aritmética simples dos índices anuais relativos ao fósforo total e a clorofila a.

Em virtude da variabilidade sazonal dos processos ambientais que têm influência sobre o grau de eutrofização de um corpo hídrico, esse processo pode apresentar variações no decorrer do ano, havendo épocas em que se desenvolve de forma mais intensa e outras em que pode ser mais limitado. Em geral, no início da primavera, com o aumento da temperatura da água, maior disponibilidade de nutrientes e condições propícias de penetração de luz na água, é comum observar-se um incremento do processo, após o período de inverno, em que se mostra menos intenso. Nesse sentido, a determinação do grau de eutrofização médio anual de um corpo hídrico pode não identificar, de forma explícita, as variações que ocorreram ao longo do período anual, assim também serão apresentados os resultados mensais para cada ponto amostral.

Os limites estabelecidos para as diferentes classes de trofia para rios e reservatórios estão descritos nas tabelas 5 e 6 a seguir:

Classificação do Estado Trófico - Rios Secchi - S P-total - P Clorofila a Categoria Ponderação (Estado Trófico) (mg.m⁻³) (mg.m⁻³) Ultraoligotrófico $\text{IET} \leq 47$ $P \leq 13$ $CL \leq 0.74$ 47 < IET ≤ 52 $13 < P \le 35$ $0,74 < CL \le 1,31$ Oligotrófico Mesotrófico 52 < IET ≤ 59 $35 < P \le 137$ $1,31 < CL \le 2,96$ Eutrófico 59 < IET ≤ 63 $137 < P \leq 296$ $2,96 < CL \le 4,70$ 63 < IET ≤ 67 $296 < P \le 640$ $4,70 < CL \le 7,46$ Supereutrófico 640 < P Hipereutrófico IET> 67 7,46 < CL

Tabela 5 – Classificação do Estado Trófico para rios segundo Índice de Carlson Modificado

Tabela 6 – Classificação do Estado Trófico para reservatórios segundo Índice de Carlson Modificado

Classificação do Estado Trófico - Reservatórios							
Categoria (Estado Trófico)	Ponderação	Secchi - S (m)	P-total - P (mg.m ⁻³)	Clorofila <i>a</i> (mg.m ⁻³)			
Ultraoligotrófico	IET ≤ 47	S ≥ 2,4	$P \leq 8$	CL ≤ 1,17			
Oligotrófico	47 < IET ≤ 52	$2.4 > S \ge 1.7$	8 < P ≤ 19	$1,17 < CL \le 3,24$			
Mesotrófico	52 < IET ≤ 59	$1,7 > S \ge 1,1$	$19 < P \le 52$	$3,24 < CL \le 11,03$			
Eutrófico	59 < IET ≤ 63	$1,1 > S \ge 0,8$	$52 < P \le 120$	11,03 < CL ≤ 30,55			
Supereutrófico	63 < IET ≤ 67	$0.8 > S \ge 0.6$	$120 < P \le 233$	$30,55 < CL \le 69,05$			
Hipereutrófico	IET> 67	0,6 > \$	233 < P	69,05 < CL			

5. IVA - Índices de Qualidade das Águas para Proteção da Vida Aquática e de Comunidades Aquáticas

O IVA (ZAGATTO *et al.*, 1999) tem o objetivo de avaliar a qualidade das águas para fins de proteção da fauna e flora em geral, diferenciado, portanto, de um índice para avaliação da água para o consumo humano e recreação de contato primário. O IVA leva em consideração a presença e concentração de contaminantes químicos tóxicos, seu efeito sobre os organismos aquáticos (toxicidade) e duas das variáveis consideradas essenciais para a biota (pH e oxigênio dissolvido), variáveis essas agrupadas no IPMCA – Índice de Variáveis Mínimas para a Preservação da Vida Aquática, bem como o IET – Índice do Estado Trófico de Carlson modificado por Toledo (1990). Desta forma, o IVA fornece informações não só sobre a qualidade da água em termos ecotoxicológicos, como também sobre o seu grau de trofia.

• IPMCA – Índice de Variáveis Mínimas para a Preservação da Vida Aquática.

O IPMCA é composto por dois grupos de variáveis:

- Grupo de variáveis essenciais (oxigênio dissolvido, pH e toxicidade).

 Para cada variável incluída no IPMCA, são estabelecidos três diferentes níveis de qualidade, com ponderações numéricas de 1 a 3 e que correspondem a padrões de qualidade de água estabelecidos pela Resolução CONAMA 357/05, e padrões preconizados pelas legislações americana (USEPA, 1991) e francesa (Code Permanent: Environnement et Nuisances, 1986), que estabelecem limites máximos permissíveis de substâncias químicas na água, com o propósito de evitar efeitos de toxicidade crônica e aguda à biota aquática.
- Grupo de substâncias tóxicas (cobre, zinco, chumbo, cromo, mercúrio, níquel, cádmio, surfactantes). Neste grupo foram incluídas as variáveis que são atualmente avaliadas pela Rede de Monitoramento de Qualidade das Águas Interiores do Estado de São Paulo e que identificam o nível de contaminação por substâncias potencialmente danosas às comunidades aquáticas. Poderão ser incluídas novas variáveis que venham a ser consideradas importantes para a avaliação da qualidade das águas, mesmo em nível regional.

Esses níveis refletem as seguintes condições de qualidade de água:

Nível A: Águas com características desejáveis para manter a sobrevivência e a reprodução dos organismos aquáticos. Atende aos padrões de qualidade da Resolução CONAMA 357/2005 para águas classes 1 e 2 (BRASIL, 2005). (ponderação 1).

A exceção são o Oxigênio Dissolvido (OD) para classe 1 cujo valor é ≥6,0 mg/L O₂.

Nível B: Águas com características desejáveis para a sobrevivência dos organismos aquáticos, porém a reprodução pode ser afetada a longo prazo (ponderação 2).

Nível C: Águas com características que podem comprometer a sobrevivência dos organismos aquáticos (ponderação 3).

A tabela 7 ilustra as variáveis componentes do IPMCA e suas ponderações, de acordo com os três níveis de qualidade.

Grupos	Variáveis	Níveis	Faixa de variação	Ponderação
	OD (mg/L)	A B C	≤ 5,0 3,0 a 5,0 < 3,0	1 2 3
Variáveis Essenciais (VE)	pH (Sörensen)	A B C	6,0 a 9,0 5,0 a < 6,0 e > 9,0 a 9,5 < 5,0 e > 9,5	1 2 3
	Toxicidade	A B C	Não Tóxico Efeito Crônico Efeito Agudo	1 2 3
	Cádmio (mg/L)	A B C	≤ 0,001 > 0,001 a 0,005 > 0,005	1 2 3
	Cromo (mg/L)	A B C	≤ 0,05 > 0,05 a 1,00 > 1,00	1 2 3
	Cobre dissolvido (mg/L)	A B C	≤ 0,009 >0,009 a 0,05 >0,05	1 2 3
Substâncias Tóxicas	Chumbo Total (mg/L)	A B C	≤ 0,01 > 0,01 a 0,08 > 0,08	1 2 3
(ST)	Mercúrio (mg/L)	A B C	<pre> < 0,0002 > 0,0002 a 0,001 > 0,001</pre>	1 2 3
	Níquel (mg/L)	A B C	≤ 0,025 > 0,025 a 0,160 > 0,160	1 2 3
	A Surfactantes* (mg/L) B C		≤ 0,5 > 0,5 a 1,0 > 1,0	1 2 3
	Zinco (mg/L)	A B C	≤ 0,18 >0,18 a 1,00 > 1,00	1 2 3

Tabela 7 – Variáveis componentes do IPMCA e suas ponderações.

Nível A: Padrões de qualidade de água da legislação brasileira (CONAMA 357/2005) para classes 1 e 2 (BRASIL, 2005), exceto o OD para classe 1 cujo valor é ≥6,0 mg/L O₂

Níveis B e C: Limites obtidos das legislações francesa e americana (CODE PERMANENT: ENVIRONNEMENT ET NUISANCES, 1986), (USEPA, 1991).

• Cálculo do IPMCA

Dadas as ponderações para as variáveis determinadas em uma amostra de água, o IPMCA é calculado da seguinte forma:

$IPMCA = VE \times ST$

onde:

VE: Valor da maior ponderação do grupo de variáveis essenciais;

ST: Valor médio das três maiores ponderações do grupo de substâncias tóxicas. Este valor é um número inteiro e o critério de arredondamento deverá ser o seguinte: valores menores que 0,5 serão arredondados para baixo e valores maiores ou iguais a 0,5 para cima.

^{*}Substâncias tensoativas que reagem com azul de metileno

O valor do IPMCA pode variar de 1 a 9, sendo subdividido em quatro faixas de qualidade, classificando as águas para proteção da vida aquática, conforme a tabela 8.

Tabela 8 – Classificação do IPMCA

Categoria	Ponderação
BOA	1
REGULAR	2
RUIM	3 e 4
PÉSSIMA	≥ 6

A classificação do IET para o cálculo do IVA é apresentada na Tabela 9.

Tabela 9 – Classificação do IET

Categoria (Estado Trófico)	Ponderação
Ultraoligotrófico	0,5
Oligotrófico	1
Mesotrófico	2
Eutrófico	3
Supereutrófico	4
Hipereutrófico	5

O IVA é calculado da seguinte forma:

$$IVA = (IPMCA \times 1,2) + IET$$

Na tabela 10 são apresentados os valores possíveis de IVA, a partir dos valores do IET integrados com os do IPMCA.

Tabela 10 – Cálculo do IVA integrando os valores do IET com os valores do IPMCA

	IPMCA					
	Ponderação	1	2	3	4	5 a 9
	0,5	1,7	2,9	4,1	5,3	7,7 – 11,3
IET	1	2,2	3,4	4,6	5,8	8,2 – 11,8
	2	3,2	4,4	5,6	6,8	9,2 – 12,8
	3	4,2	5,4	6,6	7,8	10,2 – 13,8
	4	5,2	6,4	7,6	8,8	11,2 – 14,8
	5	6,2	7,4	8,6	9,8	12,2 – 15,8

Legenda: ■ Ótima ■ Boa ■ Regular ■ Ruim ■ Péssima

 $6.8 \le IVA$

O valor resultante do índice descreve cinco classificações de qualidade, ilustradas na tabela 11.

 $\begin{tabular}{c|ccc} \textbf{Categoria} & \textbf{Ponderação} \\ \hline \textbf{ÓTIMA} & IVA \le 2,5 \\ \hline \textbf{BOA} & 2,6 \le IVA \le 3,3 \\ \hline \textbf{REGULAR} & 3,4 \le IVA \le 4,5 \\ \hline \textbf{RUIM} & 4,6 \le IVA \le 6,7 \\ \hline \end{tabular}$

Tabela 11 – Classificação do IVA

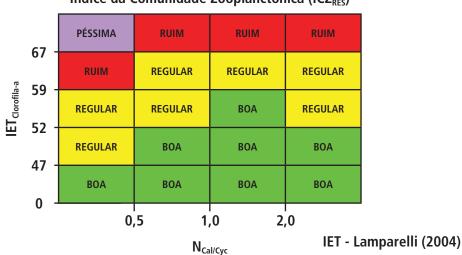
De acordo com as legislações estadual (Regulamento da Lei 997/76, aprovado pelo Decreto Estadual 8468/76) e federal (Resolução CONAMA 357/05), a proteção das comunidades aquáticas está prevista para corpos d'água enquadrados nas classes 1, 2 e 3, sendo, portanto, pertinente a aplicação do IVA somente para esses ambientes. Assim sendo, para os corpos d'água enquadrados na classe 4 não será aplicado o IVA.

6. ICF - Índice da Comunidade Fitoplanctônica

PÉSSIMA

Este índice utiliza a dominância dos grandes grupos que compõem o fitoplâncton, a densidade dos organismos e o Índice de Estado Trófico (IET), visando separar em categorias a qualidade da água. Com a alteração do IET, em 2005, foi estabelecida uma nova ponderação dessa variável, válida tanto para o índice para rios (ICF_{RIO}) quanto para reservatórios (ICF_{RES}), conforme mostra a tabela 12.

Categoria Ponderação **Níveis** Não há dominância entre os grupos **ÓTIMA** 1 Densidade total < 1.000 org/mL Dominância de Clorofíceas (Desmidiáceas) ou Diatomáceas BOA 2 Densidade total > 1.000 e < 5.000 org/mL $52 < IET \leq 59$ Dominância de Clorofíceas (Chlorococcales), Fitoflagelados ou Dinoflagelados **REGULAR** 3 Densidade total > 5.000 e < 10.000 org/mL 59 < IET ≤ 63 Dominância de Cianobactérias ou Euglenofíceas **RUIM** 4 Densidade total > 10.000 org/mL


Tabela 12 – Classificação do Índice da Comunidade Fitoplanctônica – ICF

O valor final, que gera o diagnóstico ou a classificação final da qualidade será simplesmente a média aritmética das três ponderações parciais relativos a dominância, densidade e valor de IET.

7. ICZ_{RES} - Índice da Comunidade Zooplanctônica para Reservatórios

O ICZ_{RES} relaciona a razão entre o número total de calanóides e o número total de ciclopóides (N_{cal}/N_{cyc}), com o Índice de Estado Trófico (IET) para clorofila *a.* Estes dois resultados encontram-se associados com categorias Boa, Regular, Ruim e Péssima, obtidas a partir do seguinte quadro:

Índice da Comunidade Zooplanctônica (ICZ_{RES})

Para a utilização da matriz diagnóstica ICZ_{RES} é necessária a presença de três grupos zooplanctônicos: Rotíferos, Cladóceros e Copépodes na amostra total. Na ausência de copépodes calanóides, emprega-se $N_{Cal}/N_{Cyc} < 0.5$; na presença de calanóides e ausência de ciclopóides, emprega-se $N_{CAL}/N_{CYC} > 2.0$; na ausência de rotíferos ou cladóceros, atribuir Ruim e, na ausência de copépodes, atribuir a condição Péssima.

8. ICB - Índice da Comunidade Bentônica

Amostras de sedimento para análise das comunidades bentônicas foram coletadas em triplicata, com pegadores do tipo Van Veen (272 cm²) ou Ponar (237 cm²) na margem deposicional de rios e na região sublitoral de reservatórios e Ekman-Birge, modificado por Lenz (200 cm²), na profundal de reservatórios.

A fixação e o preparo das amostras seguiram a Norma Técnica CETESB L5.309 (CETESB, 2003).

Para amostras dos rios os organismos bentônicos, foram identificados até família, para a maioria dos taxa, exceto para Chironomidae, em que se atingiu o nível de sub-famílias e tribos. Para reservatórios, Chironomidae e Oligochaeta foram identificados até gênero/espécie. Na identificação dos organismos foram utilizadas as chaves de Righi (1984), Lopretto & Tell (1995, tomos II e III), Brinkhurst & Marchese (1992) e Fernández & Domínguez (2001), Calor (2007), Pinho (2008), Mariano (2007), Trivinho-Strixino (2011), Segura et al. (2011).

Foram calculados os seguintes índices descritores da estrutura das comunidades bentônicas:

- 1. Riqueza (S), sendo a soma das categorias taxonômicas encontradas na amostra.
- 2. Índice de Diversidade de Shannon-Wiener (H') (Washington, 1984).
- 3. **Índice de Comparação Sequencial (ICS)** (Cairns & Dickson, 1971), em cujo cálculo foi empregado software desenvolvido pelo prof. Dr. Aristotelino Monteiro Ferreira para a CETESB (Henrique-Marcelino *et al.*, 1992).
- 4. Razão Tanytarsini/Chironomidae (Tt/Chi) (EPA/OHIO, 1987).
- 5. Riqueza de taxa sensíveis (Ssens), em que foram considerados sensíveis as famílias de Ephemeroptera, Plecoptera, Trichoptera e o gênero *Stempellina* de Chironomidae-Tanytarsini em rios e as famílias de Ephemeroptera, Odonata, Trichoptera e o gênero *Stempellina* de Chironomidae-Tanytarsini em reservatórios.
- 6. **Dominância de grupos tolerantes (T/DT)**, tendo sido considerados tolerantes, Tubificinae sem queta capilar, Tubificinae com queta capilar (se *Tubifex*), Naidinae e *Chironomus*, em rios e *Limnodrilus hoffmeisteri, Bothrioneurum, Tubifex, Dero, Pristina, Pristinella* e *Chironomus*, em reservatórios.

Além disso, sempre que possível, ou seja, quando ocorreram populações significativas ($N \ge 100$) de *Chironomus* nas amostras, foi avaliada a freqüência de deformidade no mento dessas larvas, tendo sido considerado deformidade, "gap", falta e excesso de dentes (Kuhlmann *et al.*, 2000).

Para o diagnóstico, estes descritores foram fundidos em índices multimétricos, adequados a cada tipo de ambiente, ou seja, zona sublitoral de reservatórios (tabela 13), zona profundal de reservatórios (tabela 14) e rios (tabela 15).

Níveis Categoria Ponderação S ICS Η' T/DT Ssens ÓTIMA 1 ≥ 25 \geq 25,00 > 3,50 < 0,10 ≥ 3 BOA 17 - 24 15,00 - < 25,00 $> 2,25 - \le 3,50$ 0,10 - < 0,402 **REGULAR** 3 9 - 16 5,00 - < 15,00 $> 1,50 - \le 2,25$ 0.40 - < 0.701

< 5,00

≤ 1,50

AZÓICO

 \ge 0,70

0

1 - 8

4

5

PÉSSIMA

Tabela 13 – Índice da Comunidade Bentônica para zona sublitoral de reservatórios (ICB_{RES-SL})

Tabela 14 – Índice da Comunidade Bentônica para zona profundal de reservatórios (ICB_{RES-P})

Categoria Pond	Dondoração	Ponderação S	Níveis			
Categoria	ronueração		ICS	H'	T/DT	Tt/Chi
ÓTIMA	1	≥ 10	> 7,00	> 2,00	< 0,20	≥ 0,10
ВОА	2	7 - 9	> 3,50 - ≤ 7,00	> 1,50 - ≤ 2,00	≥ 0,20 - < 0,50	> 0,06 - < 0,10
REGULAR	3	4 - 6	> 1,00 - ≤ 3,50	> 0,50 - ≤ 1,50	≥ 0,50 - < 0,80	> 0,03 - ≤ 0,06
RUIM	4	1 - 3	≤ 1,00	≤ 0,50	≥ 0,80	≥ 0,03
PÉSSIMA	5	AZÓICO				

Níveis Categoria Ponderação S Tt/Chi T/DT **ÓTIMA** ≥ 21 > 20.00 > 2.50 ≤ 0.25 ≥ 3 **BOA** 2 14 - 20 $> 9,50 - \le 20,00$ > 0,25 - < 0,50 2 $> 1,50 - \le 2,50$ **REGULAR** 3 6 - 13 > 3,00 - ≤ 9,50 > 1,00 - ≤ 1,50 \geq 0,50 - \leq 0,75 4 ≤ 5 ≤ 3,00 0 **RUIM** ≤ 1,00 > 0,75 **PÉSSIMA AZÓICO**

Tabela 15 – Índice da Comunidade Bentônica para rios (ICB_{RIO})

Para o cálculo do Índice da Comunidade Bentônica apenas um dos índices de diversidade (H' ou ICS) é considerado, dando-se preferência ao ICS. O valor final, que gera o diagnóstico ou a classificação final da qualidade do habitat, será simplesmente a média aritmética do ranking dos índices parciais.

Com relação à freqüência de deformidade em mento de larvas de *Chironomus*, foi considerada incidência natural da população valores de até 2%, como citado em literatura (Bonani, 2010), sendo o diagnóstico realizado segundo critérios descritos na tabela 16.

Tabela 16 – Categoria de qualidade da frequencia de deformidade em mento de larvas de Chironomus

QUALIDADE	FREQUÊNCIA (%)	RELAÇÃO COM O AMBIENTE
ÓTIMA	≤ 2	Ambiente sem contaminante que promovem a má formação do mento de <i>Chironomus</i>
REGULAR	2,1 - 6	Frequência provavelmente provocada por contaminantes diluídos no esgoto doméstico
RUIM	> 6	Frequência provavelmente provocada por contaminantes químicos lançados no ambiente

BIBLIOGRAFIA

OHIO EPA. Biological criteria for the protection of aquatic life: vol. III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Collumbus, Ohio Environmental Protection Agency/Division of Water Quality Planning and Assessment Division, 19p., 1989. SIMONE, L.R.L. Land and freshwater mollusks of Brazil. São Paulo, EGB-FAPESP. 390p. 2006.

9. IQAC - Índice de Qualidade das Águas Costeiras

Índice de Qualidade de Água – CCME Canadá

A Rede de Monitoramento das Águas Costeiras da CETESB, embora relativamente nova, oferece valiosas informações sobre a qualidade dessas águas. Contudo, dados apresentados de forma discreta fornecem informações limitadas no que se refere ao diagnóstico geral das áreas monitoradas. Não obstante, estas informações são usadas na gestão da qualidade dessas águas. No sentido de aperfeiçoar a apresentação e integrar as informações geradas optou-se por introduzir neste ano, o cálculo de um Índice de qualidade para as águas costeiras que possa agregar os dados mais relevantes gerando uma classificação que reflete um diagnóstico das áreas avaliadas no litoral paulista.

Com esse objetivo foi empregada a metodologia do Índice de Qualidade elaborado pelo CCME - Canadian Council of Ministers of the Environment (2001), pois se trata de uma ferramenta devidamente testada e validada com base estatística e aplicável também para águas salinas e salobras.

O método Canadense consiste em uma análise estatística que relaciona os resultados obtidos nas análises com um valor padrão para cada parâmetro incluído no cálculo. Por ser um método estatístico, o modelo não pode ser utilizado para menos de 4 valores. Para tanto, o índice foi calculado para cada ponto de amostragem utilizando-se os resultados obtidos nas três profundidades em duas campanhas, totalizando 6 valores.

A metodologia Canadense contempla 3 fatores principais que se referem às desconformidades em relação à um padrão legal ou valor de referência.

- Parâmetros ou abrangência (Scope)
- 2. Frequencia
- 3. Amplitude

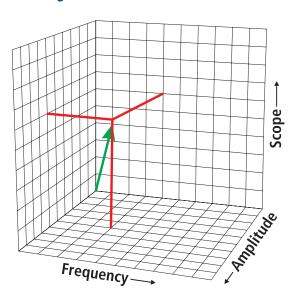


Figura 3 – Modelo conceitual do índice.

1. Abrangência: Parâmetros Desconformes

Este fator do índice (denominado F_1) avalia a quantidade de parâmetros que apresenta não conformidades. Uma área que apresente desconformidade em poucos parâmetros será menos penalizada no cálculo do que uma área que apresente desconformidade em muitos parâmetros analisados. Este fator não considera a frequência das não conformidades de forma que apenas uma ocorrência é suficiente para a inclusão do parâmetro. O cálculo é porcentual simples como apresentado na equação (1):

$$F_1 = \left(\frac{V_{NC}}{V_T}\right) \times 100 \quad (1)$$

Onde:

 V_{NC} é o número de variáveis que apresentaram não conformidade em relação aos valores de referência (por exemplo os limites da Resolução CONAMA 357/2005);

 $V_{\rm T}$ é o número total de variáveis analisadas que possuem valores de referência.

2. Frequência de desconformidade

Este fator avalia a quantidade de não conformidades como um todo e não diferencia os parâmetros entre si. Desta forma, uma área que tenha poucos parâmetros com não conformidades e que estes parâmetros apresentem resultados sistematicamente não conformes será penalizada da mesma forma que uma área em que muitos parâmetros apresentem não conformidades ocasionais. Este fator temporal é impactado pelo fato da CETESB não realizar quatro amostragens anuais. A deficiência em número de campanhas por ano foi compensada considerando-se as amostras de superfície, meio e fundo de cada uma das duas campanhas anuais realizadas atualmente. O cálculo é apresentado na equação (2).

$$F_2 = \left(\frac{A_{NC}}{A_{T}} \right) x \quad 100 \quad (2)$$

Onde:

 A_{NC} é o número total de amostras não conformes;

 A_{T} é o número total de amostras.

Nota: incluem-se todas as amostras de todos os parâmetros considerados para o cálculo, mesmo aqueles com menor número (as análises de clorofila consideram apenas superfície e meio).

3. Amplitude da desconformidade

Este fator (denominado F_3) avalia a amplitude das não conformidades. Neste caso a quantidade de amostras desconformes e o 'tamanho' do desvio em relação ao padrão utilizado serão determinantes. Desta forma um valor 50% acima do padrão teria um peso igual a dois valores que excedessem em apenas 25%. Cada amostra não conforme deve ser comparada ao padrão e o valor total dos desvios deve ser somado segundo as equações (3a), (3b) e (4). A equação (3b) deve ser usada em casos em que existe um valor mínimo e não máximo como é o caso do oxigênio dissolvido.

$$D_{i} = \left(\frac{NC_{j}}{R_{i}}\right) - 1 \tag{3a}$$

$$D_{i} = \left(\frac{R_{i}}{NC_{i}}\right) - 1 \qquad (3b)$$

$$S = -\frac{\sum_{i=1}^{n} D_i}{A_r}$$
 (4)

Onde:

 D_i é o desvio do valor da não conformidade em relação ao valor de referência;

NC_i é o resultado das análises não conformes;

R_i é valor de referência para o parâmetro analisado;

S é a somatória normalizada dos desvios.

A parcela F_3 é então calculada seguindo-se uma função assintótica que transpõe o resultado para um número em uma escala de 0 e 100 conforme a equação (5).

$$F_3 = \frac{S}{0.01 \times S + 0.01}$$
 (5)

Índice

O índice é então calculado segundo a equação (6).

Indice Costeiro =
$$\frac{\sqrt{F_1^2 + F_2^2 + F_2^3}}{1.732}$$
 (6)

O valor 1,732 advém do fato de que o valor máximo para cada fator do índice pode atingir é 100. A visualização gráfica dos três fatores mostra que o vetor resultante pode ser dado pela equação (7).

$$\sqrt{100^2 + 100^2 + 100^2} = \sqrt{30000} = 173.2$$
 (7)

Sendo 173,2 seu valor máximo. Desta forma, faz-se necessário adicionar o divisor 1,732 para trazer a amplitude máxima do vetor para uma escala de 0 a 100.

O CCME determinou faixas de classificação para o índice que se mostraram bastante satisfatórias em testes realizados pela CETESB e optou-se por utilizar estas faixas em um primeiro momento. As classificações são apresentadas na tabela 17.

Tabela 17 – Categorias de qualidade do IQAC

Faixa de valores do índice	Classificação da faixa
≥95	Excelente
<95 e ≥80	Boa
<80 e ≥65	Regular
<65 e ≥45	Ruim
<45	Péssima

10. IB - Índice de Balneabilidade

O Índice de Balneabilidade visa avaliar a qualidade da água para fins de recreação de contato primário, sendo aplicado em praias de águas interiores, localizadas em rios e reservatórios.

Com o objetivo de simplificar para a população, a análise dos dados da qualidade, a CETESB desenvolveu, a partir dos resultados obtidos nos monitoramentos semanal e mensal, uma Qualificação Anual, que baseada em critérios estatísticos simplificados, expressa uma síntese da qualidade das águas monitoradas ao longo do ano.

As praias possuem frequencia semanal de amostragem, exceto aquelas que apresentam, de um modo geral, condição boa para banho, além de serem mais afastadas das áreas urbanas.

A classificação das praias é estabelecida pela Resolução CONAMA 274/200. A CETESB, através da Decisão de Diretoria Nº 112/2013/E, de 09/04/2013 estabeleceu novos valores, mais restritivos, para classificação do indicador *Escherichia coli*. A classificação atualmente utilizada para classificação das praias consta na tabela 18.

Coliforme Termotolerante Escherichia coli **Enterococos** CATEGORIA (UFC/100 mL) (UFC/100 mL) (UFC/100 mL) Máximo de 250 em 80% ou Máximo de 150⁽¹⁾ em 80% ou Máximo de 25 em 80% ou **EXCELENTE** mais tempo mais tempo mais tempo Máximo de 500 em 80% ou Máximo de 300⁽¹⁾ em 80% ou Máximo de 50 em 80% ou **PRÓPRIA** MUITO BOA mais tempo mais tempo mais tempo Máximo de 600(1) em 80% ou Máximo de 1.000 em 80% ou Máximo de 100 em 80% ou SATISFATÓRIA mais tempo mais tempo mais tempo Superior a 1.000 em mais Superior a 600⁽¹⁾ em mais Superior a 100 em mais de 20% do tempo de 20% do tempo de 20% do tempo **IMPRÓPRIA** Maior que 2.500 Maior que 1.500⁽¹⁾ Maior que 400

Tabela 18 – Classificação de balneabilidade das praias

(1) Valores estabelecido na Decisão de Diretoria N° 112/2013/E, de 09/04/2013

Publicado no Diário Oficial Estado de São Paulo - Caderno Executivo I (Poder Executivo, Seção I), edição nº 123 (68) do dia 12/04/2013, Páginas: 42 a 44.

Para a classificação semanal das praias, cuja frequência de amostragem é semanal, utilizam-se os resultados das últimas cinco semanas. Para as praias mensais, a categoria é estabelecida utilizando apenas resultado obtido na campanha.

O IB é obtido através de uma síntese das classificações ao longo das classificações semanais. As especificações que determinam a qualidade anual são apresentadas na Tabela 19

Tabela	19 – Ír	ndice de	Balneabilidade	 Classificação 	Anual

Categoria	Classificação
ÓTIMA	Praias classificadas como EXCELENTES em 100% do tempo.
BOA	Praias próprias em 100% do tempo, exceto as classificadas como ÓTIMA
REGULAR	Praias classificadas como IMPRÓPRIAS em até 25% do tempo.
RUIM	Praias classificadas como IMPRÓPRIAS entre 25% e 50% do tempo.
PÉSSIMA	Praias classificadas como IMPRÓPRIAS em mais de 50% do tempo.

11. Classificação do teste de toxicidade aguda com *Vibrio fischeri* (Sistema Microtox®)

O teste de toxicidade aguda com a bactéria luminescente *Vibrio fischeri* foi utilizado na avaliação da qualidade das águas superficiais e sedimentos do Estado de São Paulo. Os resultados foram classificados em quatro classes, adaptadas de Coleman & Qureshi (1985), para melhor compreensão do nível de toxicidade das amostras. Os resultados são expressos como CE₂₀, sendo esta a concentração da amostra que causa 20% de efeito tóxico (inibição de emissão de luz da bactéria). A tabela 20 apresenta a classificação empregada:

 $\begin{tabular}{c|cccc} \textbf{Categoria} & \textbf{Ponderação} \\ \hline \textbf{NÃO TÓXICA} & \textbf{CE}_{20} > 81,9\% \\ \hline \textbf{MODERADAMENTE TÓXICA} & 50\% < \textbf{CE}_{20} \leq 81,9\% \\ \hline \textbf{TÓXICA} & 25 < \textbf{CE}_{20} \leq 50\% \\ \hline \textbf{MUITO TÓXICA} & \textbf{CE}_{20} \leq 25\% \\ \hline \end{tabular}$

Tabela 20 – Classificação do teste de toxicidade aguda com Vibrio fischeri

12. Critério de Avaliação da Qualidade dos Sedimentos

O sedimento é avaliado e classificado por meio de diferentes linhas de evidência, que são critérios que definem seu grau de qualidade. As três principais linhas de evidência são: Contaminação Química, Comunidade Bentônica e Toxicidade, este último incluindo teste de toxicidade com *Hyalella azteca*. As linhas de evidência são complementadas de forma a obter um diagnóstico mais detalhado.

Assim a linha de evidência de toxicidade é complementada com os ensaios de mutação reversa (Teste de Ames), teste de Toxicidade Aguda (Microtox®) e frequencia de deformidade.

O diagnóstico químico é complementado pela análise do Fósforo Total, que avalia a extensão do grau de eutrofização dos corpos hídricos. Analisam-se também Carbono Orgânico Total e Nitrogênio Kjeldahl que, juntamente com o Fósforo Total, avaliam a sua qualidade biogeoquímica, notadamente a carga interna de nutrientes e a condição de eutrofização desses corpos d'áqua.

Também foi estabelecido um critério para avaliação da qualidade microbiológica do sedimento por meio das variáveis Coliformes e *Clostridium perfringens*.

a) Substâncias Químicas

As substâncias químicas são classificadas em função da sua concentração, com vistas à proteção da vida aquática. A qualidade é baseada nos valores de TEL (concentração abaixo da qual raramente são esperados efeitos biológicos adversos) e PEL (concentração acima da qual frequentemente são esperados efeitos biológicos adversos) estabelecidos pelo "Canadian Council of Ministers of the Environment" (CCME, 2002) para arsênio, metais pesados e compostos orgânicos. Os mesmos valores guias foram adotados pela resolução CONAMA 454/12 (BRASIL, 2012) que estabelece diretrizes e procedimentos mínimos para a avaliação de material dragado.

Para o diagnóstico químico foram estabelecidas cinco classes de qualidade de acordo com sua relação com TEL e PEL (Figura 4)

Figura 4 – Classificação de contaminantes químicos em cinco faixas de qualidade e sua relação com os critérios TEL e PEL.

Assim a qualidade ÓTIMA, para cada contaminante, corresponderia à concentração inferior a TEL. A qualidade BOA, a faixa entre TEL, inclusive, e a concentração correspondente a 50% da distância entre TEL e PEL, somado a TEL. A qualidade REGULAR, a faixa superior a 50% da distância entre TEL e PEL, somado a TEL e inferior a PEL. A qualidade RUIM, a faixa entre PEL, inclusive, e a concentração correspondente a 1,5 x de seu próprio valor. E a qualidade PÉSSIMA acima de 1,5 x PEL.

Na ocorrência de bioacumuláveis (organoclorados e mercúrio) acima de PEL considera-se piora do diagnóstico em uma classe. Essa linha justifica-se pelo fato de que em termos biológicos, um único contaminante em concentração elevada seria suficiente para causar dano a uma população (KUHLMANN *et al.*, 2007).

A classe de cada substância química é detalhada na Tabela 21.

Tabela 21 – Classificação de contaminantes em sedimento de água doce estabelecidos a partir de TEL e PEL.

QUALIDADE	ÓTIMA	ВОА	REGULAR	RUIM	PÉSSIMA
As (μg/g)	< 5,9	≥ 5,9 - 11,5	> 11,5 - < 17,0	17,0 - 25,5	> 25,5
Cd (µg/g)	< 0,6	≥ 0,6 - 2,1	> 2,1 - < 3,5	3,5 - 5,3	> 5,3
Pb (μg/g)	< 35,0	≥ 35,0 - 63,2	> 63,2 - < 91,3	91,3 - 137,0	> 137,0
Cu (μg/g)	< 35,7	≥ 35,7 - 116,4	> 116,4 - < 197,0	197,0 - 295,5	> 295,5
Cr (µg/g)	< 37,3	≥ 37,3 - 63,7	> 63,7 - < 90,0	90,0 - 135,0	> 135,0
Hg (μg/g)	< 0,170	≥ 0,170 - 0,328	> 0,328 - < 0,486	0,486 - 0,729	> 0,729
Ni (μg/g)	< 18	≥ 18 - 27	> 27 - < 36	36 - 54	> 54
Zn (μg/g)	< 123	≥ 123 - 219	> 219 - < 315	315 - 473	> 473
Aldrin (μg/kg)	< 2	≥ 2 - 211	> 211 - < 420	420 - 630	> 630
BHC (μg/kg)	< 3	≥ 3 - 6002	> 6002 - < 12000	12000 - 18000	> 18000
α BHC (μg/kg)	< 6	≥ 6 - 253	> 253 - < 500	500 - 750	> 750
α BHC (μg/kg)	< 5	≥ 5 - 10503	> 10503 - < 21000	21000 - 31500	> 31500
Lindano (= Υ BHC) (μg/kg)	< 0,94	≥ 0,94 - 1,16	> 1,16 - < 1,38	1,38 - 2,07	> 2,07
Clordano (µg/kg)	< 4,50	≥ 4,50 - 6,69	> 6,69 - < 8,87	8,87 - 13,31	> 13,31
DDD (μg/kg)	< 3,54	≥ 3,54 - 6,03	> 6,03 - < 8,51	8,51 - 12,77	> 12,77
DDE (μg/kg)	< 1,42	≥ 1,42 - 4,09	> 4,09 - < 6,75	6,75 - 10,13	> 10,13
DDT (µg/kg)	< 1,19	≥ 1,19 - 2,98	>2,98 - < 4,77	4,77 - 7,15	> 7,16
Dieldrin (μg/kg)	< 2,85	≥ 2,85 - 4,76	> 4,76 - < 6,67	6,67 - 10,01	> 10,01
Endrin (µg/kg)	< 2,67	≥ 2,67 - 32,54	> 32,54 - < 62,40	62,40 - 93,60	> 93,60
Heptacloro (μg/kg)	< 0,30	≥ 0,30 - 5,15	> 5,15 - < 10,00	10,00 - 15,00	> 15,00
Heptacloro epóxido (μg/kg)	< 0,60	≥ 0,60 - 1,67	> 1,67 - < 2,74	2,74 - 4,11	> 4,11
HCB (μg/kg)	< 20	≥ 20 - 130	> 130 - < 240	240 - 360	> 360
Mirex (μg/kg)	< 7	≥ 7 - 654	> 654 - < 1300	1300 - 1950	> 1950
HAPs (μg/kg)	< 870	≥ 870 - 4455	> 4455 - < 8040	8040 - 12060	> 12060
Acenafteno (μg/kg)	< 6,71	≥ 6,71 - 47,81	> 47,81 - < 88,90	88,90 - 133,35	> 133,35
Acenaftileno (μg/kg)	< 5,87	≥ 5,87 - 66,94	> 66,94 - < 128,00	128,00 - 192,00	> 192,00
Antraceno (µg/kg)	< 46,9	≥ 46,9 - 146,0	> 146,0 - < 245,00	245,0 - 367,5	> 367,5
Benzo(a)antraceno (μg/kg)	< 31,7	≥ 31,7 - 208,4	> 208,4 - < 385,0	385,0 - 577,5	> 577,5
Benzo(a)pireno (μg/kg)	< 31,9	≥ 31,9 - 407,0	> 407,0 - < 782,0	782,0 - 1173,0	> 1173,0
Criseno (µg/kg)	< 57,1	≥ 57,1 - 459,6	> 459,6 - < 862	862,0 - 1293,0	> 1293,0
Dibenz(a,h)antraceno (µg/kg)	< 6,22	≥ 6,22 - 70,61	> 70,61 - < 135,00	135,00 - 202,50	> 202,50
Fluoranteno (µg/kg)	< 111	≥ 111 - 1233	> 1233 - < 2355	2355 - 3533	> 3533
Fluoreno (μg/kg)	< 21,2	≥ 21,2 - 82,6	> 82,6 - < 144,0	144,0 - 216,0	> 216,0
2-Metilnaftaleno (µg/kg)	< 20,2	≥ 20,2 - 110,6	> 110,6 - < 201,0	201,0 - 301,5	> 301,5
Naftaleno (μg/kg)	< 34,6	≥ 34,6 - 212,8	> 212,8 - < 391,0	391,0 - 586,5	> 586,5
Fenantreno (μg/kg)	< 41,9	≥ 41,9 - 278,5	> 278,5 - < 515,0	515,0 - 772,5	> 772,5
Pireno (μg/kg)	< 53	≥ 53 - 464	> 464 - < 875	875 - 1313	> 1313
Aroclor 1254 (μg/kg)	< 60	≥ 60 - 200	> 200 - < 340	340 - 510	> 510
PCBs (µg/kg)	< 34,1	≥ 34,1 - 155,6	> 155,6 - < 277,0	277,0 - 415,5	> 415,5
Dioxinas e furanos (ng TEQ/kg de peso seco)	< 0,85	≥ 0,85 - 11,18	> 11,18 - < 21,50	21,50 - 32,25	> 32,25

b) Comunidade Bentônica

Para o diagnóstico da qualidade do sedimento pelo componente biótico é utilizada a estrutura da comunidade bentônica, em que se aplicam índices multimétricos desenvolvidos para rios e reservatórios (Ver item 8. ICB – Índice de Comunidade Bentônica) em cinco classes de qualidade.

c) Toxicidade

• Ensaio ecotoxicológico com Hyalella azteca

Os sedimentos são avaliados em quatro classes de qualidade de acordo com os tipos e intensidades de efeitos observados em ensaios realizados com o anfípoda *Hyalella azteca*.

O diagnóstico ecotoxicológico está sendo ampliado com a introdução do ensaio de toxicidade com a larva de inseto *Chironomus sancticaroli* (Diptera), denominado anteriormente *Chironomus xanthus*. Este ensaio baseou-se no método USEPA (2000), mas seus resultados ainda não foram utilizados no critério de avaliação dos sedimentos.

Mutagenicidade

O grau de mutagenicidade é avaliado em cinco classes de acordo com o número de revertentes/g seco obtidos do ensaio de mutação reversa - Teste de Ames.

• Teste de Toxicidade Aguda com Vibrio fisheri (Sistema Microtox®)

O teste de toxicidade aguda com a bactéria luminescente *Vibrio fisheri* é realizado na água intersticial e apresenta quatro classes de intensidade (Ver item 11. Classificação do teste de toxicidade aguda com Vibrio fischeri (Sistema Microtox®))

• Frequência de deformidade no mento

A frequência de deformidade no mento das larvas de *Chironomus* é avaliada quando ocorrem populações significativas dessas larvas (N>100) nas amostras.

d) Fósforo

A qualidade biogeoquímica dos sedimentos é avaliada por meio das concentrações de carbono, nitrogênio e fósforo. Este último avalia a carga interna de nutrientes e condição de eutrofização desses corpos d'água.

Adotou-se, portanto, o fósforo para integrar o Critério de Qualidade do Sedimento, estabelecendo três classes de qualidade: BOA: valores inferiores a 750 mg/kg, pois podem ser considerados de origem natural, uma vez que são comparáveis às médias encontradas tanto para o folhelho médio (Turenkian & Wedepöhl, 1961) quanto aos valores revistos para a composição da crosta terrestre (Wedepöhl, 1995); REGULAR: valores entre 750 a 1.500 mg/kg, pois pode ser considerado que estejam acarretando impacto no corpo d'água. PÉSSIMA: valores superiores a 1.500 mg/kg, considerado de elevado impacto.

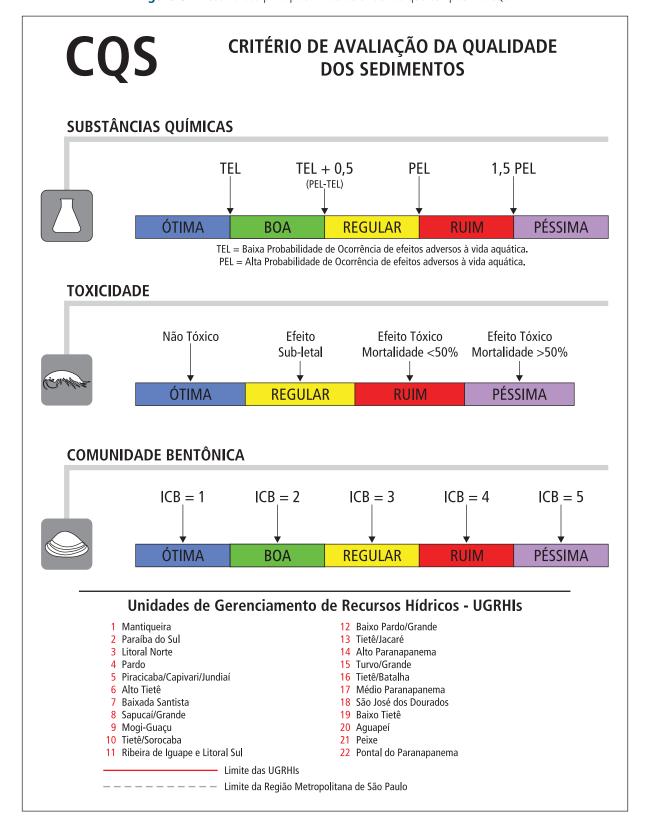
e) Microbiológica

A qualidade microbiológica é estabelecida em cinco classes de qualidade com base na concentração de Coliformes e em quatro classes com base na concentração de *Clostridium perfringens*

Os critérios de classificação para as diferentes linhas de evidência estão representados na tabela 22.

Tabela 22 – Critérios para o diagnóstico da qualidade dos sedimentos

QUALIDADE	ÓTIMA	BOA	REGULAR	RUIM	PÉSSIMA
Substâncias Químicas ^(a)	Todos contaminantes em concentração inferior a TEL	O pior contaminante com concentração acima de TEL mas inferior 50% da distância entre TEL e PEL	O pior contaminante com concentração acima de TEL superior a 50% da distância entre TEL e PEL, mas inferior a PEL	O pior contaminante com valor entre PEL e até 1,5 PEL	O pior contaminante com valor superando 1,5 PEL
Comunidade Bentônica (ICB ^(b))	ICB = 1	ICB = 2	ICB = 3	ICB = 4	ICB = 5
Ecotoxicidade (<i>Hyalella azteca</i>)	Não Tóxico		Efeito subletal, redução no crescimento	Efeito agudo, mortalidade <50%	Efeito agudo, mortalidade ≥50%
Mutagenicidade (Teste de Ames)	Não detectado	< 50 rev/g	>50 até 500 rev/g	>500 até 5.000 rev/g	>5.000 rev/g
Toxicidade Aguda (<i>Vibrio fisheri</i>)	Não tóxica $CE_{20} > 81,9\%$		Moderadamente tóxica $50\% < CE_{20} \le 81,9\%$	Tóxica 25< CE ₂₀ ≤ 50%	$\begin{array}{c} \text{Muito t\'oxica} \\ \text{CE}_{20} \leq 25\% \end{array}$
Frequência de deformidade no mento (<i>Chironomus</i>)	≤ 2 %		2,1 a 6 %	< 6 %	
Fósforo (mg/kg)		< 750		>750 até 1.500	>1.500
Coliformes (NMP/100g)	≤ 1.000	>1.000 até 10.000	>10.000 até 100.000	>100.00 até 1.000.000	>1.000.000
Clostridium perfringens (NMP/100g)		< 10 ⁵	$\geq 10^5 \text{ e} < 10^6$	≥10 ⁶ e <10 ⁷	≥ 10 ⁷


a) segundo os valores guias estabelecidos pelo CCME (1999).

Na figura 5, estão resumidas as três principais linhas de evidência: Substâncias Químicas, Toxicidade (ensaio ecotoxicológico com *Hyalella azteca*) e Comunidade Bentônica.

b) ICB = Índice da Comunidade Bentônica

Figura 5 – Resumo das principais linhas de evidência que compõem o CQS.

13. Indicador de Coleta e Tratabilidade de Esgoto da População Urbana de Município – ICTEM

O indicador foi formado por cinco elementos, representando condições a serem avaliadas no sistema público de tratamento de esgotos. Dentro do modelo proposto, é verificada a importância relativa desses elementos e atribuídas ponderações diferenciadas para os mesmos.

Os elementos de formação do indicador em relação a um sistema público de tratamento de esgotos são os seguintes:

- a) Coleta;
- b) Existência e eficiência do sistema de tratamento do esgoto coletado;
- c) A efetiva remoção da carga orgânica em relação à carga potencial;
- d) A destinação adequada de lodos e resíduos gerados no tratamento;
- e) O não desenquadramento da classe do corpo receptor pelo efluente tratado e lançamento direto e indireto de esgotos não tratados.

Os valores dos três primeiros elementos são variáveis e relacionados, proporcionalmente, à:

- a) Quantidade do esgoto coletado no município (população urbana atendida por redes de esgotos e população atendida por sistemas isolados de tratamento);
- b) Quantidade de tratamento do esgoto coletado e respectiva eficiência da estação de tratamento;
- c) Eficiência global de remoção em relação à carga orgânica potencial.
 Os outros dois elementos recebem valores fixos:
- d) Depende da existência de destino adequado para o lodo e outros resíduos gerados no tratamento e
- e) Quando o efluente final do tratamento provoca o desenquadramento do corpo receptor desse efluente.

Dentro do projeto do Município Verde, foi inicialmente considerado o valor 12 para o tratamento de esgotos. Depois esse valor foi revisto, por mudanças conceituais do próprio índice, sendo atribuído o valor 10. Dessa maneira, a tabela 23 resume a composição proposta e a ponderação do indicador em relação ao valor fixado pelo projeto, que nessa revisão corresponde à própria composição do ICTEM.

Tabela 23 – Composição do Indicador de Coleta e Tratabilidade de Esgoto da População Urbana de Município – ICTEM

	Elemento do indicador	Composição (%)	Ponderação
1	Coleta	15	1,5
2	Tratamento e eficiência de remoção	15	1,5
3	Eficiência global de remoção	65	6,5
4	Destino adequado de lodos e resíduaos de tratamento	2	0,2
5	Efluente da estação não desenquadra a classe do corpo receptor	3	0,3
	Total	100	10

Notas:

- i) coleta: % da população urbana atendida por rede de esgotos ou sistemas isolados.
- ii) tratamento e eficiência de remoção: % da população urbana com esgoto tratado.
- iii) a eficiência global de remoção depende da eficiência unitária das ETEs. Se a eficiência global for igual ou maior que 80%, o valor para esse elemento do indicador será de 6,5.

Fórmula:

$$ICTEM = 0.015C + 0.015T + 0.065E + D + Q$$

Sendo:

C = % da população urbana atendida por rede de coleta de esgotos;

T = % da população urbana com esgoto tratado;

E = Eficiência global de remoção de carga orgânica, que é: (0,01C * 0,01T * 0,01N)*100;

N = % de remoção da carga orgânica pelas ETEs;

D = zero se destinação de lodos e resíduos de tratamento for inadequada e 0,2 se for adequada;

Q = zero se efluente desenquadrar a classe do corpo receptor ou existir lançamento direto ou indireto de esgotos não tratados. Será atribuído o valor de 0,3 se o efluente não desenquadrar a classe do corpo receptor.

